



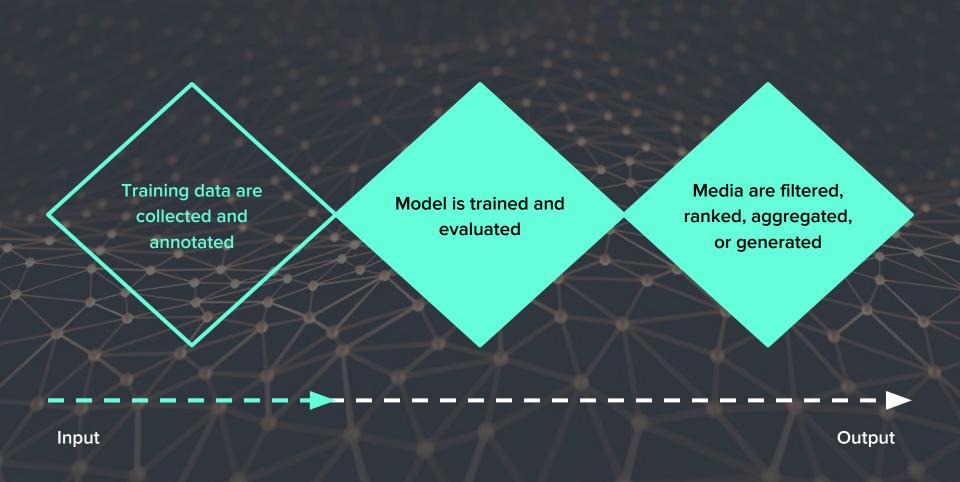
Training data are collected and annotated

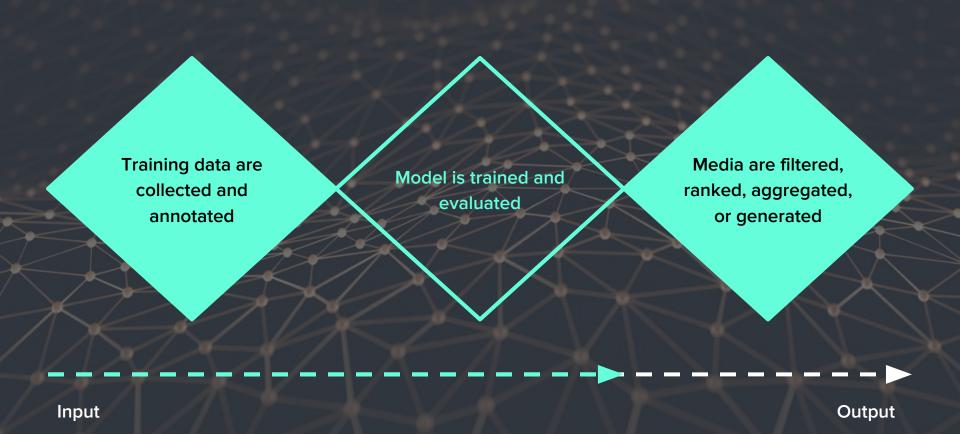
Model is trained and evaluated

Media are filtered, ranked, aggregated, or generated

Input

Output







Model is trained and evaluated

Media are filtered, ranked, aggregated, or generated

Input

Output

# At a high level, where is unfairness creeping in?

Reporting bias

Selection bias

Overgeneralization bias

Out-group homogeneity bias

Stereotypical bias

Historical Unfairness

Implicit associations

Implicit stereotypes

Prejudice

Group Attribution error

Halo effect

Reporting bias

Selection bias

Overgeneralization bias

Out-group homogeneity bias

Stereotypical bias

Historical Unfairness

Implicit associations

Implicit stereotypes

Prejudice

Group Attribution error

Halo effect

## Data collection and annotation

Sampling error

Non-sampling error

Insensitivity to sample size

Correspondence bias

In-group bias

Bias blind spot

Confirmation bias

Subjective validation

Experimenter's bias

Choice-supportive bias

Neglect of probability

Anecdotal fallacy

Illusion of validity

Automation bias

Reporting bias

Selection bias

Overgeneralization bias

Out-group homogeneity bias

Stereotypical bias

Historical Unfairness

Implicit associations

Implicit stereotypes

Prejudice

Group Attribution error

Halo effect

## Data collection and annotation

Sampling error

Non-sampling error

Insensitivity to sample size

Correspondence bias

In-group bias

Bias blind spot

Confirmation bias

Subjective validation

Experimenter's bias

Choice-supportive bias

Neglect of probability

Anecdotal fallacy

Illusion of validity

Automation bias

## Training and evaluation

**Evaluation** metric

Features

Objective Function

Model architecture

Variables

Tasks

Hyperparameters

Reporting bias

Selection bias

Overgeneralization bias

Out-group homogeneity bias

Stereotypical bias

Historical Unfairness

Implicit associations

Implicit stereotypes

Prejudice

Group Attribution error

Halo effect

## Data collection and annotation

Sampling error

Non-sampling error

Insensitivity to sample size

Correspondence bias

In-group bias

Bias blind spot

Confirmation bias

Subjective validation

Experimenter's bias

Choice-supportive bias

Neglect of probability

Anecdotal fallacy

Illusion of validity

Automation bias

## Training and evaluation

**Evaluation** metric

Features

Objective Function

Model architecture

Variables

Tasks

Hyperparameters

# We use data to estimate how likely different things are

## **Stereotypical bias**

A man and his son are in a terrible accident and are rushed to the hospital in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my son!"

How could this be?



A man and his son are in a terrible accident and are rushed to the hospital in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my son!"

#### How could this be?



A man and his son are in a terrible accident and are rushed to the hospital in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my son!"

How could this be?

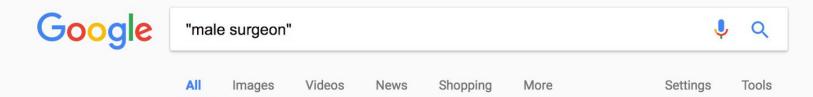




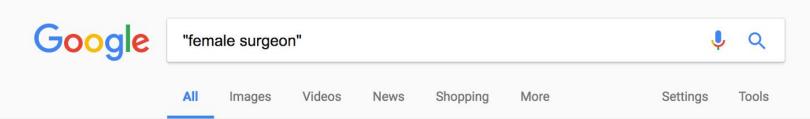
The majority of test subjects overlooked the possibility that the doctor is a she—including men, women, and self-described feminists.

Wapman & Belle, Boston University

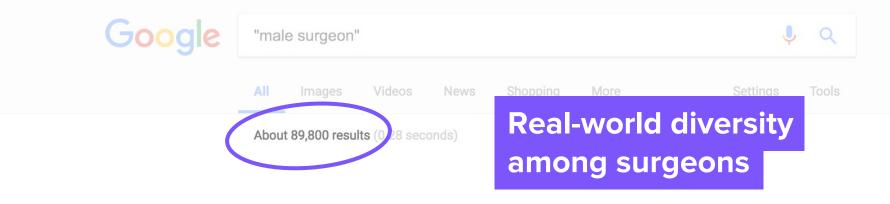
### **Reporting bias**

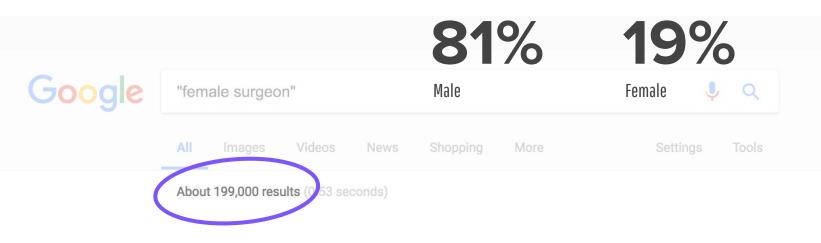


About 89,800 results (0.28 seconds)



About 199,000 results (0.53 seconds)





## World learning from text

Gordon and Van Durme, 2013

| Word       | Frequency in corpus |
|------------|---------------------|
| "spoke"    | 11,577,917          |
| "laughed"  | 3,904,519           |
| "murdered" | 2,834,529           |
| "inhaled"  | 984,613             |
| "breathed" | 725,034             |
| "hugged"   | 610,040             |
| "blinked"  | 390,692             |
| "exhale"   | 168,985             |

# World learning from text

Gordon and Van Durme, 2013

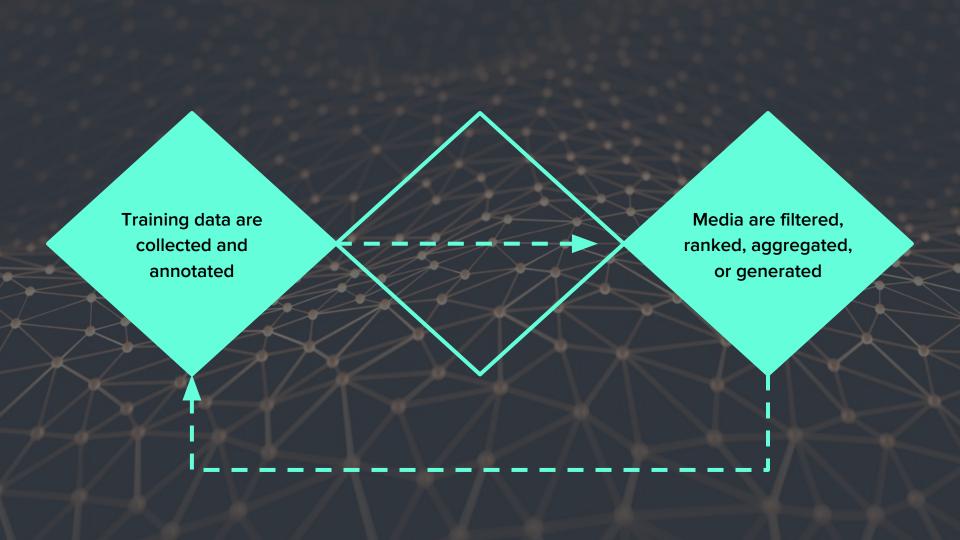
| Word       | Frequency in corpus |
|------------|---------------------|
| "spoke"    | 11,577,917          |
| "laughed"  | 3,904,519           |
| "murdered" | 2,834,529           |
| "inhaled"  | 984,613             |
| "breathed" | 725,034             |
| "hugged"   | 610,040             |
| "blinked"  | 390,692             |
| "exhale"   | 168,985             |
|            |                     |

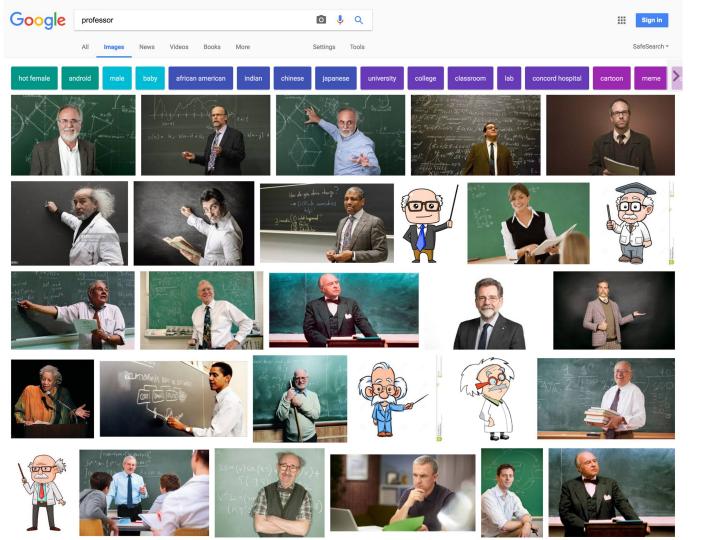
Top results show historical unfairness, implicit associations, and implicit stereotypes reflected in Reporting Bias

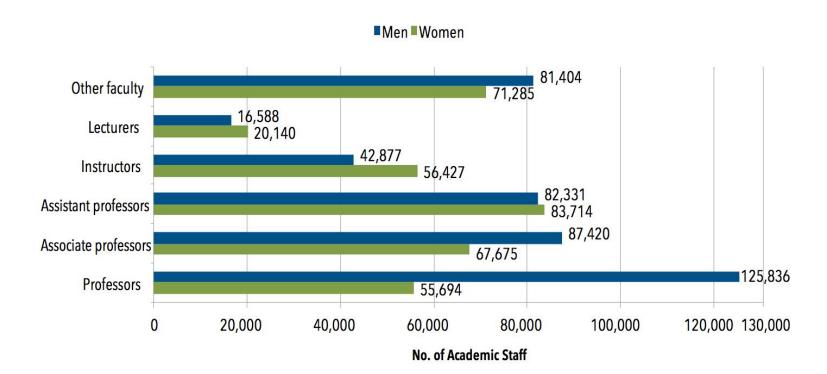
We tend to mention and share things that are

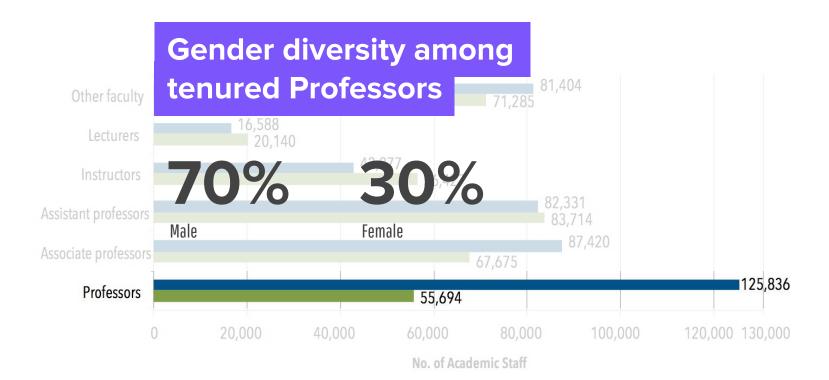
outside of our expectation of day-to-day norms;

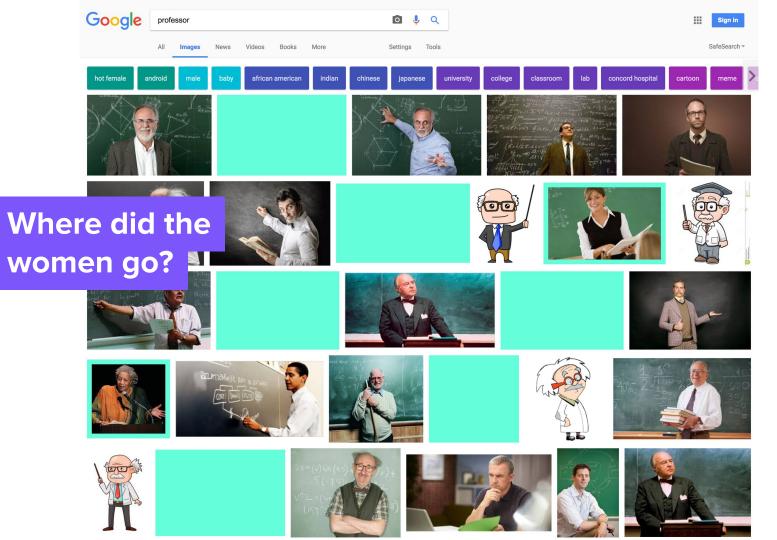
ignoring the things that "go without saying".

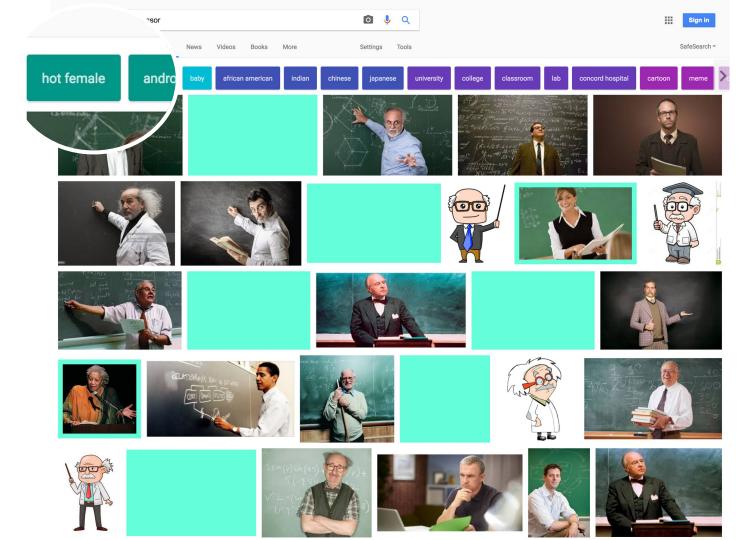


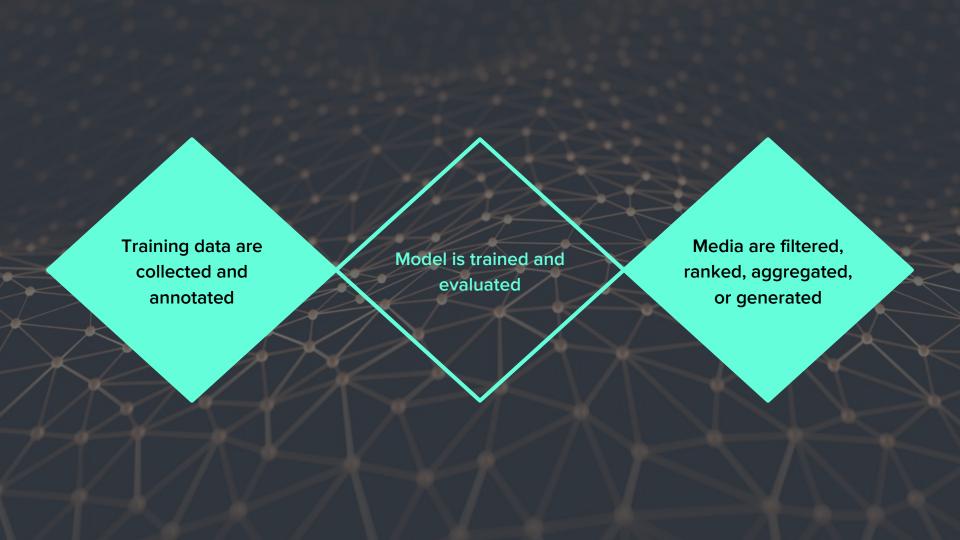












**INSIGHT: EVALUATION METRIC** 

#### **The Confusion Matrix**

### **Evaluation Metric Insights: The Confusion Matrix**

#### **Predictions**

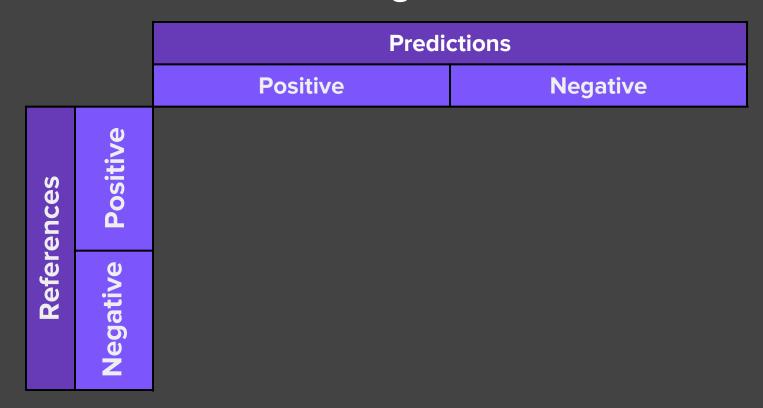
Create for each (subgroup, prediction) pair. Compare across subgroups.

### **Evaluation Metric Insights: The Confusion Matrix**

#### **Predictions**

Create for each (subgroup, prediction) pair. Compare across subgroups.

Example: women, face detection men, face detection



|            |          | Predictions                                                                             |                                                                                          |  |
|------------|----------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
|            |          | Positive                                                                                | Negative                                                                                 |  |
| References | Positive | Reference says something exists Model predicts it  True Positives                       | Reference says something exists Model doesn't predict it  False Negatives  Type II Error |  |
| Refer      | Negative | Reference says something doesn't exist Model predicts it  False Positives  Type I error | Reference says something doesn't exist Model doesn't predict it  True Negatives          |  |

|            |          | Predictions                                                                             |                                                                                          |  |
|------------|----------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
|            |          | Positive                                                                                | Negative                                                                                 |  |
| suces      | Positive | Reference says something exists Model predicts it  True Positives                       | Reference says something exists Model doesn't predict it  False Negatives  Type II Error |  |
| References | Negative | Reference says something doesn't exist Model predicts it  False Positives  Type I error | Reference says something doesn't exist Model doesn't predict it  True Negatives          |  |

**The Problem Areas** 

|            |          | Predic                                                                                  |                                                                                          |                                                                                    |
|------------|----------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|            |          | Positive                                                                                | Negative                                                                                 | Calculate                                                                          |
| ences      | Positive | Reference says something exists Model predicts it  True Positives                       | Reference says something exists Model doesn't predict it  False Negatives  Type II Error | True Positive Rate/<br>Sensitivity/<br>Recall<br>False Negative Rate/<br>Miss Rate |
| References | Negative | Reference says something doesn't exist Model predicts it  False Positives  Type I error | Reference says something doesn't exist Model doesn't predict it  True Negatives          | False Positive Rate/<br>Fallout  True Negative Rate/<br>Specificity                |
|            |          | Precision / Positive Predictive Value,<br>False Discovery Rate                          | Negative Predictive Value,<br>False Omission Rate                                        | LR+, LR-                                                                           |

|            |          | Predic                                                      |                                                                    |                                               |
|------------|----------|-------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|
|            |          | Positive                                                    | Negative                                                           | Calculate                                     |
|            | tive     | Reference says something exists<br>Model predicts it        | Reference says something exists<br>Model doesn't predict it        | True Positive Rate/<br>Sensitivity/<br>Recall |
| ences      | Positive | True Positives                                              | <b>False Negatives</b> Type II Error                               | False Negative Rate/<br>Miss Rate             |
| References | tive     | Reference says something doesn't exist<br>Model predicts it | Reference says something doesn't exist<br>Model doesn't predict it | False Positive Rate/<br>Fallout               |
|            | Nega     | Model predicts it  False Positives  Type I error            | True Negatives                                                     |                                               |
|            |          |                                                             |                                                                    |                                               |

|            |          | Predic                                                         |                                                                    |           |
|------------|----------|----------------------------------------------------------------|--------------------------------------------------------------------|-----------|
|            |          | Positive                                                       | Negative                                                           | Calculate |
|            | tive     | Reference says something exists<br>Model predicts it           | Reference says something exists<br>Model doesn't predict it        |           |
| References | Positive | True Positives                                                 | False Negatives<br>Type II Error                                   |           |
|            | tive     | Reference says something doesn't exist<br>Model predicts it    | Reference says something doesn't exist<br>Model doesn't predict it |           |
| <b>.</b>   | Negative | <b>False Positives</b><br>Type I error                         | True Negatives                                                     |           |
|            |          | Precision / Positive Predictive Value,<br>False Discovery Rate | Negative Predictive Value,<br>False Omission Rate                  |           |

#### **Evaluation Metric: Error trade-offs**



**False Positive** 

(Type I error)



**False Negative** 

(Type II Error)

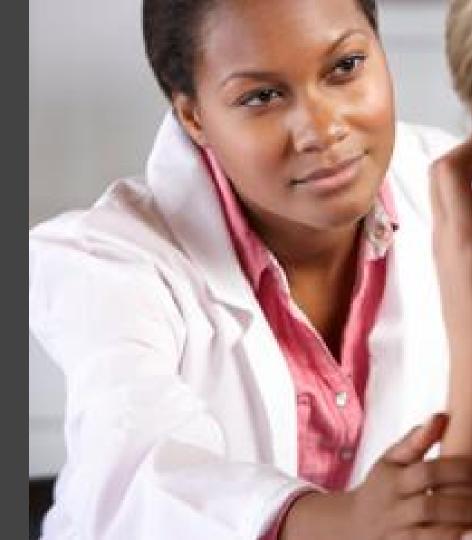


#### Real World Example:

 Project working with clinicians for mental health



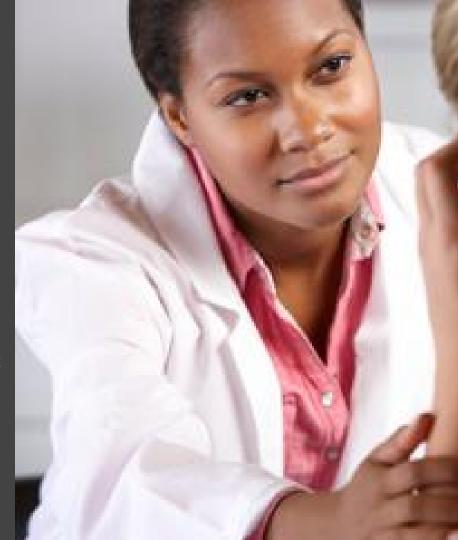
- Project working with clinicians for mental health
- Trying to detect suicide risk



- Project working with clinicians for mental health
- Trying to detect suicide risk
- For patient trust (and sanity), important not to have False Positives



- Project working with clinicians for mental health
- Trying to detect suicide risk
- For patient trust (and sanity), important not to have False Positives
  - Predicting suicide risk when there is not a risk



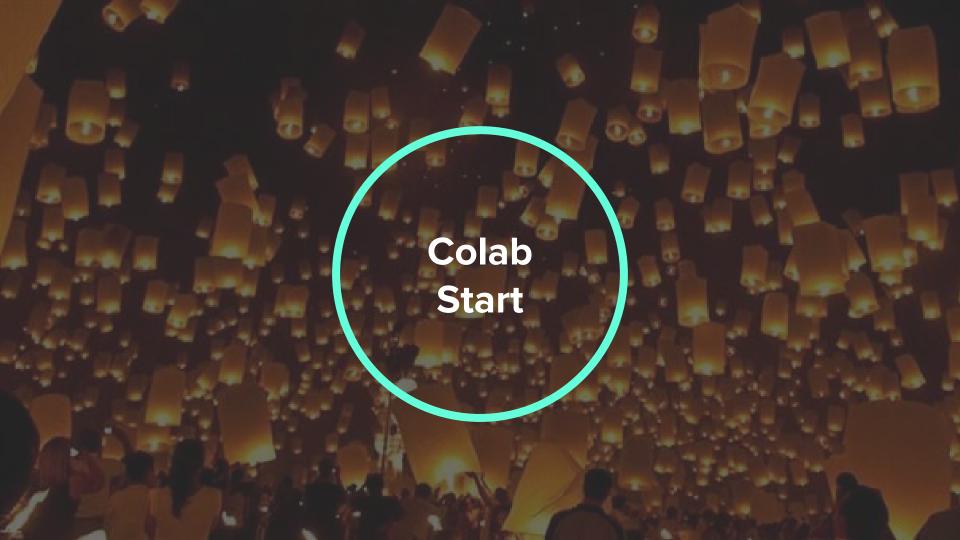
- Project working with clinicians for mental health
- Trying to detect suicide risk
- For patient trust (and sanity), important not to have False Positives
  - Predicting suicide risk when there is not a risk
- Prioritize True Positive Rate at a low False Positive Rate



Choose your evaluation metrics in light of acceptable tradeoffs between False Positives and False Negatives.







#### go/lantern-eval-colab



**INSIGHT: FEATURES** 

## **Word embeddings**

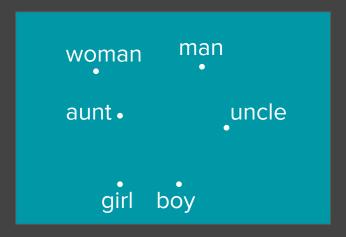
Word embeddings represent each word as a vector.



Word embeddings represent each word as a vector.

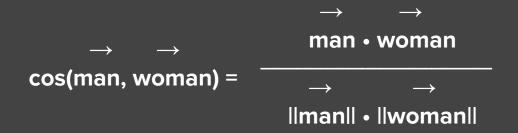


Allows us to calculate similarity between words.



Word embeddings represent each word as a vector.

Similarities between embeddings can be found using cosine distance:



Word embeddings represent each word as a vector.

Similarities between embeddings can be found using cosine distance.

Similarities between the **difference** between vectors can also be calculated using cosine distance.

$$yrac{d}{dr} 
ightarrow 
ightarr$$

<u>Bolukbasi, Tolga; Chang, Kai-Wei; Zou, James; Saligrama, Venkatesh; Kalai, Adam (2016). "Man is to Computer</u> <u>Programmer as Woman is to Homemaker?: Debiasing Word Embeddings". Proceedings of NIPS.</u>

Word embeddings represent each word as a vector.

Similarities between embeddings can be found using cosine distance.

Similarities between the difference between vectors can also be calculated using cosine distance.

This can show us roughly equivalent relationships between words.

→ → → → → → man - woman ≈ king - queen

Word embeddings represent each word as a vector.

Similarities between embeddings can be found using cosine distance.

Similarities between the difference between vectors can also be calculated using cosine distance.

This can show us roughly equivalent relationships between words ... including unfairness.

man - woman ≈ king - queen
→ → →

man - woman ≈ computer programmer - homemaker

Bolukbasi, Tolga; Chang, Kai-Wei; Zou, James; Saligrama, Venkatesh; Kalai, Adam (2016). "Man is to Computer Programmer as Woman is to Homemaker?: Debiasing Word Embeddings". Proceedings of NIPS.

#### Potential Solution: Debias your embeddings

#### High-Level:

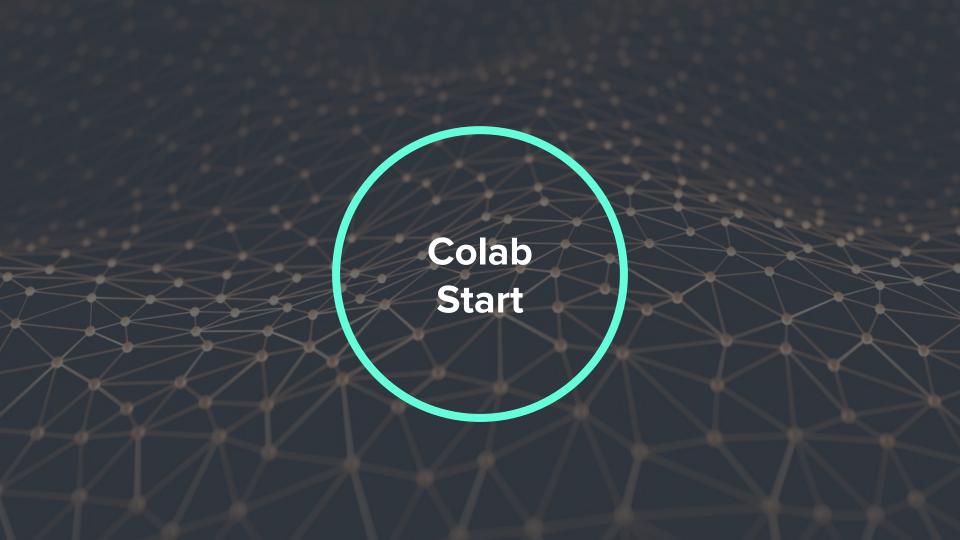
- Calculate the representation of a concept, like "gender", using word embeddings.
- 2. Subtract this representation from learned word embeddings.
- Use a hyperparameter to define how much this subtraction effects the embedding.

Link to Code

TECHNIQUE: EMBEDDINGS

# **Embeddings with Tensorflow**

Embeddings reveal words used in similar contexts within your dataset.



## go/tf-embedding-colab

| Id     | <b>L2</b> Distance↑ | L2 Norm  | Adjust     | Word               |
|--------|---------------------|----------|------------|--------------------|
| 2000   | 0.000000            | 1.000000 | Remove     | teacher            |
| 1736   | 0.707160            | 1.000000 | Add        | <u>teachers</u>    |
| 44702  | 0.732374            | 1.000000 | Add        | guidance counselor |
| 6229   | 0.740699            | 1.000000 | Add        | elementary         |
| 105512 | 0.791613            | 1.000000 | <u>Add</u> | paraprofessional   |
| 371401 | 0.795801            | 1.000000 | Add        | paraeducator       |
| 13229  | 0.798513            | 1.000000 | Add        | <u>Teacher</u>     |
| 931    | 0.829719            | 1.000000 | Add        | student            |
| 198    | 0.833520            | 1.000000 | <u>Add</u> | <u>school</u>      |
| 4825   | 0.837015            | 1.000000 | Add        | <u>classroom</u>   |

# https://g3doc.corp.google.com/ engedu/ml/mldays/g3doc/embeddings\_demo.md

# Embeddings Demo

THE JOURNEY CONTINUES

#### **Fairness-Relevant Tools**

#### **Google-internal**

| go/mlx 🗆                    | Suite of tools useful for different aspects of fairness/bias. Some key tools also listed below.                                                                                     |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| go/tfx □<br>Codelab         | Computes statistics over data for visualization and example validation; anomaly detection; etc.                                                                                     |
| go/mlx tools                | Great list of tools to help visualize different aspects of your model.                                                                                                              |
| go/mlx-lantern □<br>Codelab | Computes evaluation metrics and loss for slices of your data with visualization. Interested in adding further support relevant to fairness in particular. Use with go/tfx or Sibyl. |
| go/ml-dash □                | Compare metrics; visualize loss over time; etc.                                                                                                                                     |
| go/wide-n-deep □            | Combine the benefits of wide models and deep models (deep learning).                                                                                                                |
| go/multitask □              | Support multitask (multi-headed) learning. Predicting several tasks at once can be useful for the tasks to mutually benefit one another.                                            |
| go/glassbox □               | Interpretable machine learning.                                                                                                                                                     |
| go/bias                     | Report biased Google products.                                                                                                                                                      |

## **Google-internal**

| Embedding Projector <   ✓           | View how different strings of text pattern with other strings in a high-dimensional space.                                                                                     |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| go/mledu-in-embeddings @            | View word relationships in embedding space.                                                                                                                                    |  |
| Rank Lab □ Recipes & Best Practices | Supports feature ablation experiments, shuffling.                                                                                                                              |  |
| Fast Feature Ablation               | Fast Feature Ablation (FFA) adapts the feature ablation process cpop/jpg developed for SmartASS to an implementation suitable for Tensorflow and TF.Learn specifically.        |  |
| Chain □□<br>Codelab                 | Provides easy handling for moving from detection to evaluation. Includes a face attribute client: Age/Gender/UHS estimates (common in semantic scene understanding).           |  |
| Affective Computing   □             | Label images for affective states, emotions, etc.                                                                                                                              |  |
| VSEval □□<br>Codelab                | Flexible infrastructure to acquire, store, and share high-quality ground truth, as well as by offering insightful statistics and visualization tools to support such research. |  |
| Learning Arbiter □□<br>Codelab      | The Arbiter Perception Eval system is in development! It aims to be a modular service oriented ecosystem built to ease up the evaluation of machine perception models.         |  |

## Thanks!

dsculley@ mmitchellai@

**ML** Fairness

Machine Learning, Subgroup Discovery

go/ml-fairness-tools go/ml-fairness-metrics

#### References

Benton, Adrian; Mitchell, Margaret; Hovy, Dirk (2017). "Multi-task learning for Mental Health Conditions with Limited Social Media Data". Proceedings of EACL.

Bolukbasi, Tolga; Chang, Kai-Wei; Zou, James; Saligrama, Venkatesh; Kalai, Adam (2016). "Man is to Computer Programmer as Woman is to Homemaker?: Debiasing Word Embeddings". Proceedings of NIPS.

Gordon, Jonathan; Van Durme, Benjamin (2013). "Reporting Bias and Knowledge Acquisition". Proceedings of the 2013 workshop on Automated knowledge base construction.

Kay, Matthew; Matuszek, Cynthia; Munson, Sean A. (2015). "Unequal Representation and Gender Stereotypes in Image Search Results for Occupations". Proceedings of CHI.

Misra, Ishan; Girshick, Ross; Mitchell, Margaret; Zitnick, Larry (2016). "Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels". Proceedings of CVPR.

Wapman, Mikaela; Belle, Deborah (2014). "A Riddle Reveals Depth of Gender Bias". Boston University. As reported by Barlow, Rich. BU Today. https://www.bu.edu/today/2014/bu-research-riddle-reveals-the-depth-of-gender-bias/

KDD Tutorial: <a href="http://francescobonchi.com/algorithmic\_bias\_tutorial.html">http://francescobonchi.com/algorithmic\_bias\_tutorial.html</a>

#### THE JOURNEY CONTINUES

#### **Additional Slides**

**INSIGHT: TASKS** 

# Leverage multiple tasks to improve performance across different subgroups

go/tf-multitask

#### **Motivation from "The Karate Kid"**

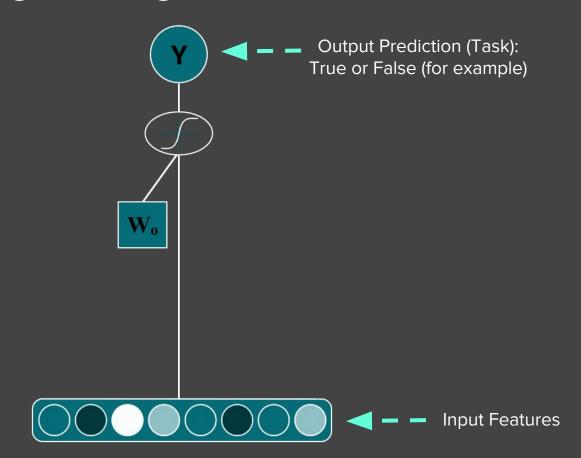


Single-task Learners (STL)

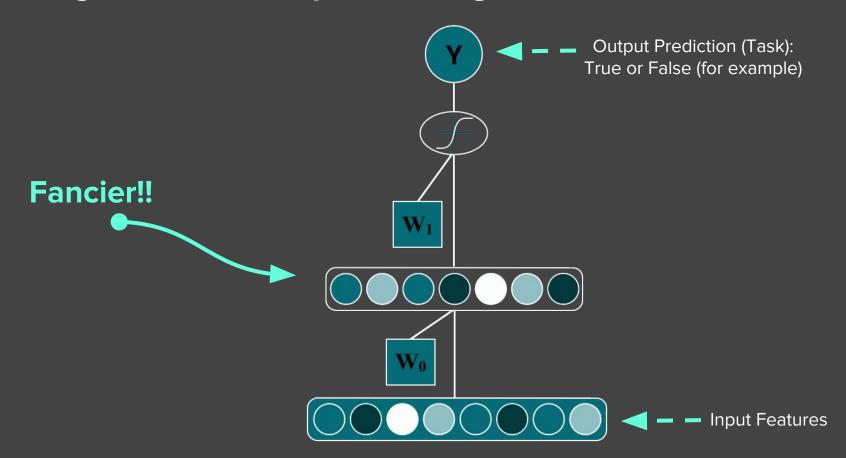


Multitask Learner (MTL)

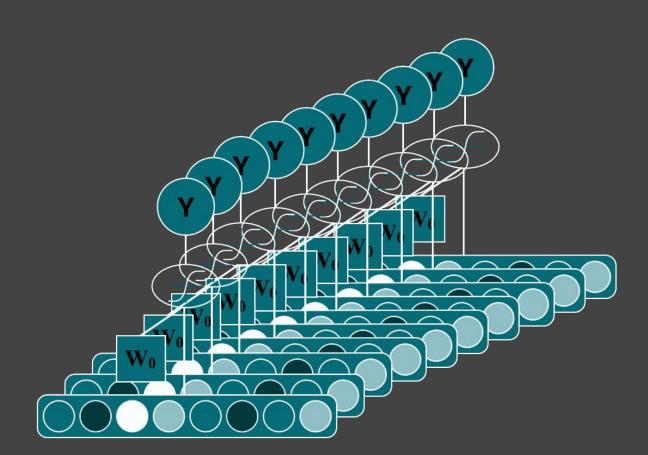
#### Single-Task: Logistic Regression



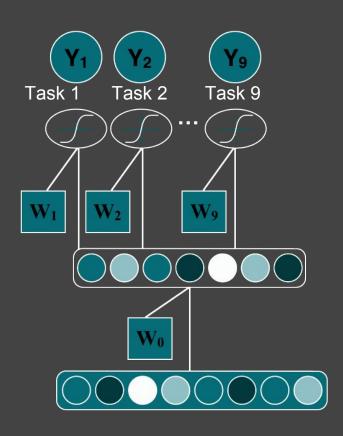
## Single-Task: Deep Learning



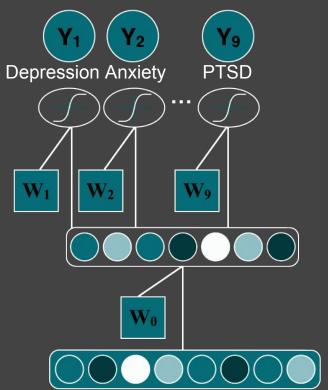
# Multiple Tasks with Basic Logistic Regression



#### Multiple Tasks + Deep Learning: Multi-task Learning

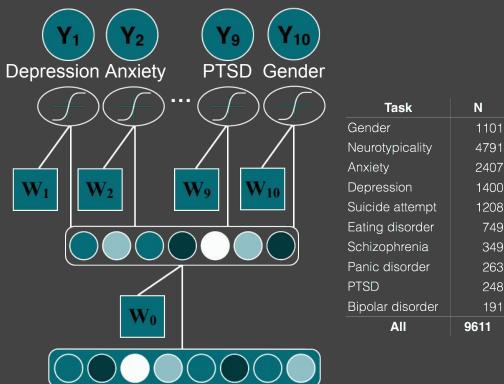


# Multiple Tasks + Deep Learning: Multi-task Learning Example



| Task             | N    |              |
|------------------|------|--------------|
| Neurotypicality  | 4791 |              |
| Anxiety          | 2407 |              |
| Depression       | 1400 |              |
| Suicide attempt  | 1208 |              |
| Eating disorder  | 749  |              |
| Schizophrenia    | 349  | <b>)</b>     |
| Panic disorder   | 263  | <5% positive |
| PTSD             | 248  | examples     |
| Bipolar disorder | 191  | J            |
| All              | 9611 |              |

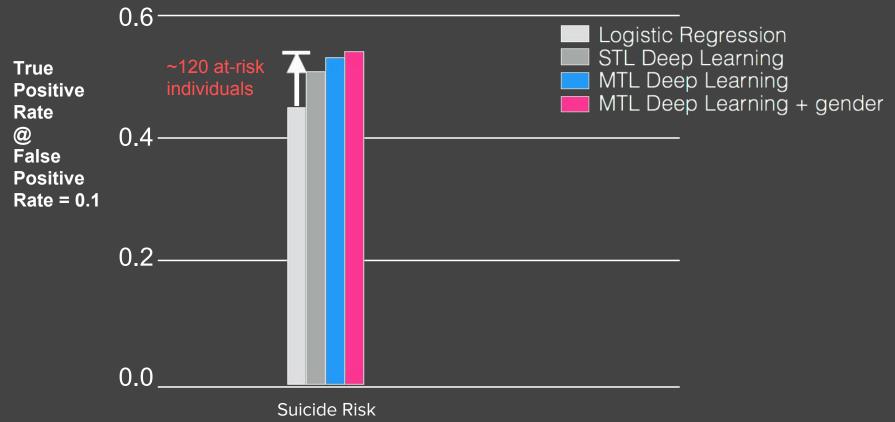
# Multiple Tasks + Deep Learning: Multi-task Learning Example



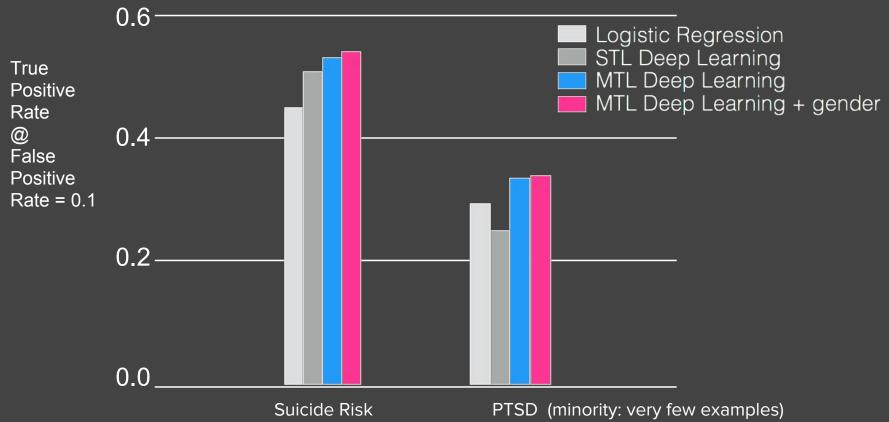
<5% positive

examples

### Improved Performance across Subgroups



#### Improved Performance across Subgroups



Benton, Mitchell, Hovy. 2017. "Multi-task learning for Mental Health Conditions with Limited Social Media Data"

#### Lantern: Guided Model Analysis, including Multi-Task!

Includes offline model evaluations, computation of metrics on different slices of the data

| feature | auc     | auprc   | averageLabel | averageRefinedPrediction | binaryConfus | binaryConfusionMatricesFromRegression |             |          |
|---------|---------|---------|--------------|--------------------------|--------------|---------------------------------------|-------------|----------|
| 1       |         |         |              |                          |              | Thresho                               | ld: 0.75000 |          |
| age:19  | 0.66929 | 0.70809 | 0.55309      | 0.55243                  | F1 Score     | Precision                             | Recall      | Accuracy |
| 800.    |         |         | 0.40000      | 0.10000                  | 0.30000      | 0.20000                               |             |          |
| age:18  | 0.68247 | 0.73486 | 0.62338      | 0.46560                  | 0.41000      | 0.11000                               | 0.31000     | 0.21000  |
| age:20  | 0.66872 | 0.70736 | 0.55309      | 0.56765                  | 0.43000      | 0.13000                               | 0.33000     | 0.23000  |
| age:22  | 0.71525 | 0.77450 | 0.62338      | 0.46510                  | 0.44000      | 0.14000                               | 0.34000     | 0.24000  |
| 4 1     |         |         |              |                          |              |                                       |             |          |

go/mlx-lantern

Source Document for Multi-Task Models

INSIGHT: OBJECTIVE FUNCTION

# Visual presence + Relevance

#### Data data everywhere ...

#### Facebook

300 Million images uploaded everyday







100 hours of video every minute



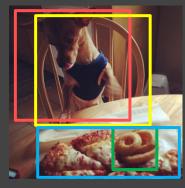
#dog #hungry



OMG Frodo is sitting eating pizza and donuts.



dog, chair, pizza, donut



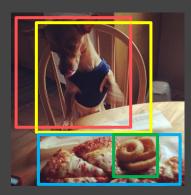
dog, chair, pizza, donut

# Data data everywhere ... But not many labels to train

#### Exhaustively annotated data is expensive

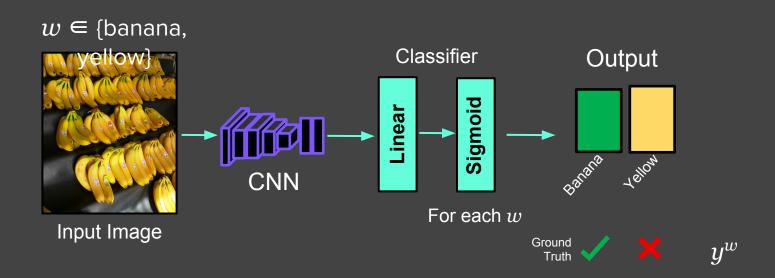


dog, chair, pizza, donut



dog, chihuahua, brown, chair, table, wall, space heater, pizza, greasy, donut 1, donut 2, pizza slice 1, pizza slice 2...

### **Simple Image Classification**



"Gold standard" Annotation: Human-biased label  $y^w \in \{0, 1\}$ 

Prediction  $h^w(y^w|I)$ 

ullet A human-biased prediction h can be factored into two terms

- ullet A human-biased prediction h can be factored into two terms
  - $\circ$  Visual presence v Is the concept visually present?



```
w ∈ {banana, yellow} ✓
```

- ullet A human-biased prediction h can be factored into two terms
  - $\circ$  Visual presence v Is the concept visually present?
  - $\circ$  Relevance r Is the concept relevant for a human?



```
w \in \{\text{banana}, \\ \text{yellow}\}
```

- ullet A human-biased prediction h can be factored into two terms.
  - $\circ$  Visual presence v Is the concept visually present?
  - $\circ$  Relevance r Is the concept relevant for a human?

$$h = f(r, v)$$



 $j \in \{0,1\}$ 

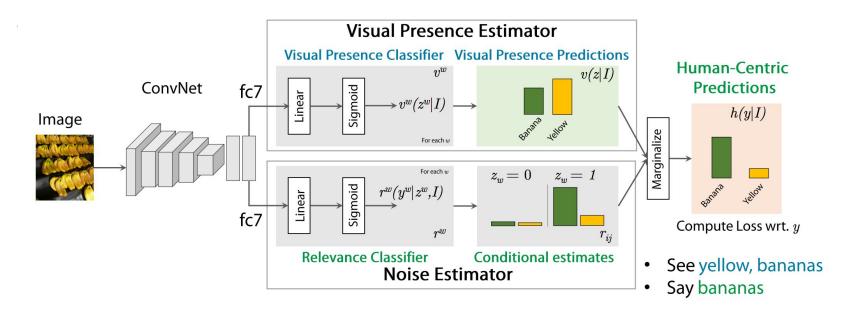
- ullet A human-biased prediction h can be factored into two terms
  - $\circ$  Visual presence v Is the concept visually present?
  - $\circ$  Relevance r Is the concept relevant for a human?

Given visual presence, is concept present? 
$$h(y|I) = \sum r(y|z=j,I)v(z=j|I)$$



|                                                              | Label | Prediction |
|--------------------------------------------------------------|-------|------------|
| Visually correct<br>ground truth<br>( <mark>Unknown</mark> ) | z     | v          |
| Available ground<br>truth<br>( <b>human-biased</b> )         | y     | h          |

#### **End-to-End Approach**



Marginalize: 
$$h(y|I) = \sum_{\mathbf{j} \in \{0,1\}} r(y|z=j,I) \ v(z=j|I)$$



# Thanks!

#### mmitchellai@

**ML** Fairness

Machine Learning, Subgroup Discovery



go/ml-fairness-tools go/ml-fairness-metrics