

Serving Under-Represented Users in Recommenders with Focused Learning

Ed H. Chi

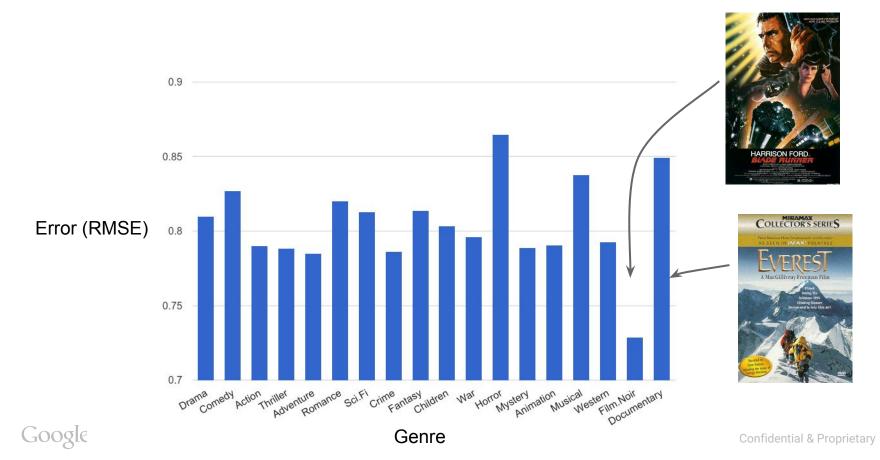
With Alex Beutel, Zhiyuan Cheng, Hubert Pham, John Anderson

SIR research & Laser team

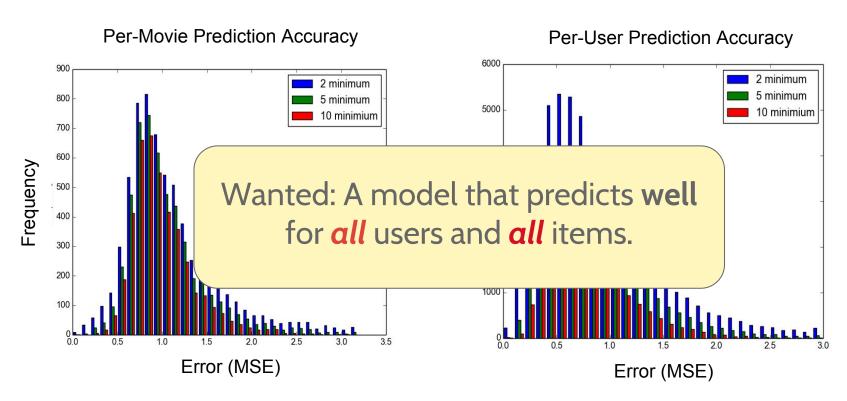
This is me ...

This is Rasmus...

Rasmus noticed lack of resolution on Danish music...

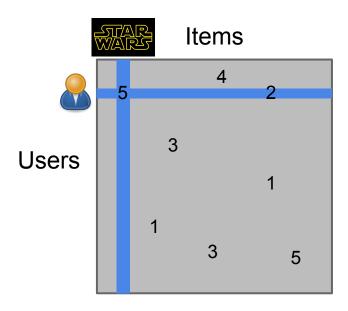

Poor regional recommendations:

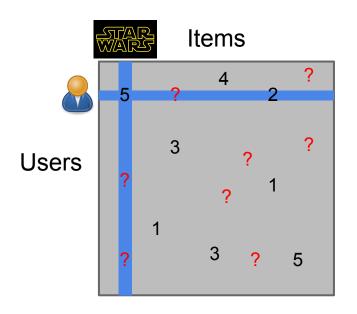
- L.O.C. Danish rapper band
- D.A.D. Danish rock band
- Recommendations: dominated by generic Danish head artists


Similar phenomenon in many other regions.

	Seeds					Seeds	
Rap	6.	L.O.C.		Rock	D.A.D.		
		recommended_entity Entity	Score			recommended_entity Entity	Score
Rap	0	Suspekt	1.12	Rock	0	Dizzy Mizz Lizzy	1.03
Rap/pop	1	Nik & Jay	1.11	Rock	1	Gasolin	0.89
Rock	2	Nephew	1.10	Pop	2	Shu-bi-dua	0.87
Pop	3	Kim Larsen	1.10	Pop/Rock	3	TV-2	0.86
Pop	4	Kim Larsen & Kjukken	1.09	Pop	4	Kim Larsen	0.86
Rock	5	Dizzy Mizz Lizzy	1.09	Rock	5	D-A-D	0.85
Rock	6	TV-2	1.09	Pop	6	Kim Larsen & Kjukken	0.85
Pop	7	Thomas Helmig	1.09	Rock	7	Sort Sol	0.84
Pop	8	Shu-bi-dua	1.09	Pop	8	John Mogensen	0.83
Rock	9	Magtens Korridorer	1.08	Pop	9	Thomas Helmig	0.83
Rap	10	Clemens	1.08	Rock	10	Magtens Korridorer	0.83

Known: Recommender quality inconsistent across movies


We don't represent users/items equally!


Why does this happen?

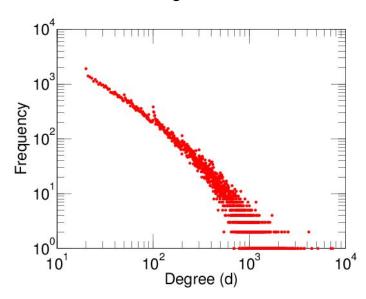
The Recommendation Problem

The Recommendation Problem

Given: Observed (user, item) ratings Find: A model that predicts the missing ratings well

Used throughout Google:

Power Law of Observations


RMSE considers **all** observations equally:

$$\sqrt{\frac{1}{|\mathcal{X}|} \sum_{(i,j) \in \mathcal{X}} (\mathcal{X}_{i,j} - \langle u_i, v_j \rangle)^2}$$

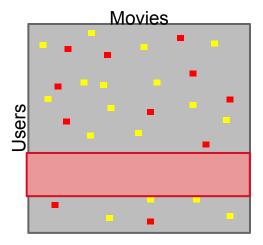
Therefore it values users and movies with more ratings far more than others with less ratings.

That is, "Globally optimal" is more focused on popular, mainstream movies than niche ones.

User Degree Distribution

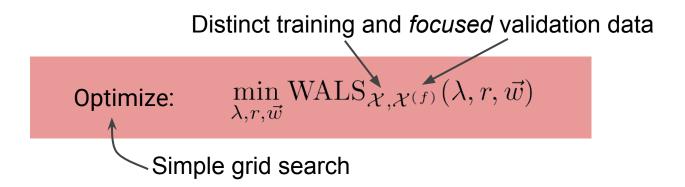
Approach

- 1. Focus Selection Where should the additional models focus?
- 2. **Focused Learning** How can learn a new model to improve prediction on a subset of the data?


Approach

- 1. Focus Selection Where should the additional models focus?
- Focused Learning How can learn a new model to improve

predicticSubset of columns the data?



Subset of rows

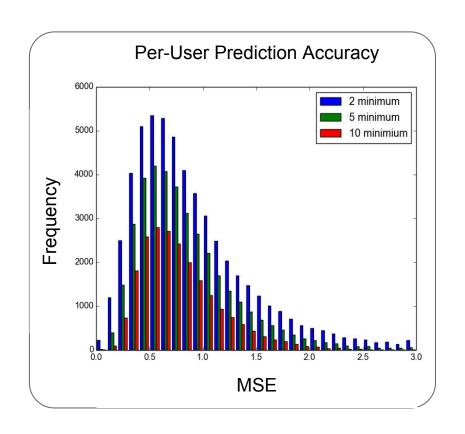
Approach

- 1. Focus Selection Where should the additional models focus?
- 2. **Focused Learning** How can learn a new model to improve prediction on a subset of the data?

Results: Focused by Movie Spectra

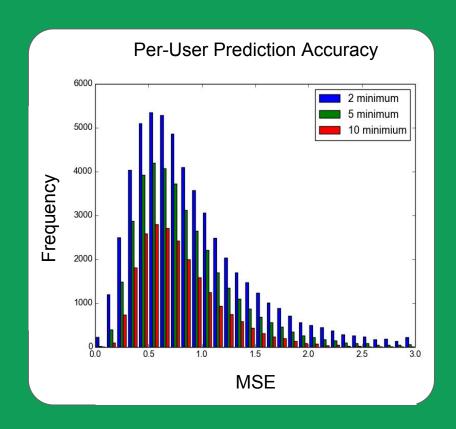
Global	Focused	% Improvement	Focused λ	Unfocused λ
1.1138	1.0212	8.314	15	150
1.0032	0.9408	6.223	15	150
0.9862	0.9450	4.174	15	60
0.9299	0.9053	2.648	15	60
0.9060	0.8908	1.679	15	60
0.8764	0.8711	0.602	30	60
0.8576	0.8552	0.279	30	60
0.8333	0.8325	0.098	30	60
0.8090	0.8090	0.003	30	60
0.7953	0.7953	0.000	30	30

Results: Focused by User


Percentile	Global	Focused	% Improvement
0%-1%	1.9989	1.9664	1.629
0%-10%	1.4192	1.4107	0.596
10%-20%	1.1177	1.1112	0.581
20%-30%	0.9824	0.9769	0.553
30%-40%	0.8834	0.8782	0.587

Conclusion

- 1. "Globally optimal" is not best for everybody.
- 2. Learn additional models focused on problematic regions.


"Myth of the average user!"

Contact me:

edchi@ go/sir

Fight the long-tail with different representations!

