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“Massive MIMO is an essential topic in the field of future cellular
networks. I have not seen any other book which can compete at that
level of detail and scientific rigor. I liked the didactic style, coming back
to root definitions (cellular networks, spectral efficiency, channel models,
and so forth) which will be very useful to PhD students and others
starting in this area. The models are very well explained and justified
as opposed to being imposed out of nowhere. This makes the reading
particularly pleasant and rich. Overall, a great tool to researchers and
practitioners in the field.”

David Gesbert, EURECOM

“This book provides a modern presentation of the state-of-the-art for
Massive MIMO communication. It includes a comprehensive treatment
of mathematical tools for analyzing and understanding Massive MIMO
networks. The authors provide an enlightening introduction to the topic,
suitable for graduate students and professors alike. The book starts
with the basic definitions and culminates in a systematic treatment of
spectral and energy efficiency. Of particular interest, the book provides
an updated assessment of the performance limiting factors, showing for
example that pilot contamination is not a fundamental limitation.”

Robert W. Heath Jr., The University of Texas at Austin
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ABSTRACT
Massive multiple-input multiple-output (MIMO) is one of the
most promising technologies for the next generation of wireless
communication networks because it has the potential to provide
game-changing improvements in spectral efficiency (SE) and en-
ergy efficiency (EE). This monograph summarizes many years of
research insights in a clear and self-contained way and provides
the reader with the necessary knowledge and mathematical tools
to carry out independent research in this area. Starting from
a rigorous definition of Massive MIMO, the monograph covers
the important aspects of channel estimation, SE, EE, hardware
efficiency (HE), and various practical deployment considerations.
From the beginning, a very general, yet tractable, canonical system
model with spatial channel correlation is introduced. This model
is used to realistically assess the SE and EE, and is later extended
to also include the impact of hardware impairments. Owing to
this rigorous modeling approach, a lot of classic “wisdom” about
Massive MIMO, based on too simplistic system models, is shown
to be questionable.
The monograph contains many numerical examples, which can
be reproduced using Matlab code that is available online at
https://dx.doi.org/10.1561/2000000093_supp.

Emil Björnson, Jakob Hoydis and Luca Sanguinetti (2017), “Massive MIMO Networks:
Spectral, Energy, and Hardware Efficiency”, Foundations and TrendsR© in Signal
Processing: Vol. 11, No. 3-4, pp 154–655. DOI: 10.1561/2000000093.



Preface

Why We Wrote this Monograph

Massive multiple-input multiple-output (MIMO) is currently a buzz-
word in the evolution of cellular networks, but there is a great divide
between what different people read into it. Some say Massive MIMO
was conceived by Thomas Marzetta in a seminal paper from 2010,
but the terminology cannot be found in that paper. Some say it is a
reincarnation of space-division multiple access (SDMA), but with more
antennas than in the field-trials carried out in the 1990s. Some say that
any radio technology with at least 64 antennas is Massive MIMO. In
this monograph, we explain what Massive MIMO is to us and how the
research conducted in the past decades lead to a scalable multiantenna
technology that offers great throughput and energy efficiency under
practical conditions. We decided to write this monograph to share
the insights and know-how that each of us has obtained through ten
years of multiuser MIMO research. Two key differences from previous
books on this topic are the spatial channel correlation and the rigorous
signal processing design considered herein, which uncover fundamental
characteristics that are easily overlooked by using more tractable but
less realistic models and processing schemes. In our effort to provide a
coherent description of the topic, we cover many details that cannot be
found in the research literature, but are important to connect the dots.
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This monograph is substantially longer than the average monograph
published in Foundations and Trends, but we did not choose the pub-
lisher based on the format but the quality and openness that it offers.
We want to reach a broad audience by offering printed books as well as
open access to an electronic version. We have made the simulation code
available online, to encourage reproducibility and continued research.
This monograph is targeted at graduate students, researchers, and pro-
fessors who want to learn the conceptual and analytical foundations of
Massive MIMO, in terms of spectral, energy, and/or hardware efficiency,
as well as channel estimation and practical considerations. We also
cover some related topics and recent trends, but purposely in less detail,
to focus on the unchanging fundamentals and not on the things that
current research is targeting. Basic linear algebra, probability theory,
estimation theory, and information theory are sufficient to read this
monograph. The appendices contain detailed proofs of the analytical
results and, for completeness, the basic theory is also summarized.

Structure of the Monograph

Section 1 introduces the basic concepts that lay the foundation for the
definition and design of Massive MIMO. Section 2 provides a rigorous
definition of the Massive MIMO technology and introduces the system
and channel models that are used in the remainder of the monograph.
Section 3 describes the signal processing used for channel estimation
on the basis of uplink (UL) pilots. Receive combining and transmit
precoding are considered in Section 4 wherein expressions for the spectral
efficiency (SE) achieved in the UL and downlink (DL) are derived and
the key insights are described and exemplified. Section 5 shows that
Massive MIMO also plays a key role when designing highly energy-
efficient cellular networks. Section 6 analyzes how transceiver hardware
impairments affect the SE and shows that Massive MIMO makes more
efficient use of the hardware. This opens the door for using components
with lower resolution (e.g., fewer quantization bits) to save energy and
cost. Section 7 provides an overview of important practical aspects,
such as spatial resource allocation, channel modeling, array deployment,
and the role of Massive MIMO in heterogeneous networks.
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How to Use this Monograph

Researchers who want to delve into the field of Massive MIMO (e.g., for
the purpose of performing independent research) can basically read the
monograph from cover to cover. However, we stress that Sections 5, 6,
and 7 can be read in any order, based on personal preferences.

Each section ends with a summary of key points. A professor who
is familiar with the broad field of MIMO can read these summaries to
become acquainted with the content, and then decide what to read in
detail.

A graduate-level course can cover Sections 1–4 in depth or partially.
Selected parts of the remaining sections may also be included in the
course, depending on the background and interest of the students. An
extensive slide set and homework exercises are made available for teach-
ers who would like to give a course based on this monograph.

The authors, October 2017



1
Introduction and Motivation

Wireless communication technology has fundamentally changed the
way we communicate. The time when telephones, computers, and Inter-
net connections were bound to be wired, and only used at predefined
locations, has passed. These communications services are nowadays
wirelessly accessible almost everywhere on Earth, thanks to the deploy-
ment of cellular wide area networks (e.g., based on the GSM1, UMTS2,
and LTE3 standards), local area networks (based on different versions
of the WiFi standard IEEE 802.11), and satellite services. Wireless
connectivity has become an essential part of the society—as vital as
electricity—and as such the technology itself spurs new applications and
services. We have already witnessed the streaming media revolution,
where music and video are delivered on demand over the Internet. The
first steps towards a fully networked society with augmented reality
applications, connected homes and cars, and machine-to-machine com-
munications have also been taken. Looking 15 years into the future, we
will find new innovative wireless services that we cannot predict today.

1Global System for Mobile Communications (GSM).
2Universal Mobile Telecommunications System (UMTS).
3Long Term Evolution (LTE).
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The amount of wireless voice and data communications has grown
at an exponential pace for many decades. This trend is referred to as
Cooper’s law because the wireless researcher Martin Cooper [91] noticed
in the 1990s that the number of voice and data connections has doubled
every two-and-a-half years, since Guglielmo Marconi’s first wireless
transmissions in 1895. This corresponds to a 32% annual growth rate.
Looking ahead, the Ericsson Mobility Report forecasts a compound
annual growth rate of 42% in mobile data traffic from 2016 to 2022 [109],
which is even faster than Cooper’s law. The demand for wireless data
connectivity will definitely continue to increase in the foreseeable future;
for example, since the video fidelity is constantly growing, since new
must-have services are likely to arise, and because we are moving into a
networked society, where all electronic devices connect to the Internet.
An important question is how to evolve the current wireless communi-
cations technologies to meet the continuously increasing demand, and
thereby avoid an imminent data traffic crunch. An equally important
question is how to satisfy the rising expectations of service quality. Cus-
tomers will expect the wireless services to work equally well anywhere
and at any time, just as they expect the electricity grid to be robust
and constantly available. To keep up with an exponential traffic growth
rate and simultaneously provide ubiquitous connectivity, industrial and
academic researchers need to turn every stone to design new revolution-
ary wireless network technologies. This monograph explains what the
Massive multiple-input multiple-output (MIMO) technology is and why
it is a promising solution to handle several orders-of-magnitude4 more
wireless data traffic than today’s technologies.

The cellular concept for wireless communication networks is defined
in Section 1.1, which also discusses how to evolve current network
technology to accommodate more traffic. Section 1.2 defines the spectral
efficiency (SE) notion and provides basic information-theoretic results
that will serve as a foundation for later analysis. Different ways to
improve the SE are compared in Section 1.3, which motivates the design
of Massive MIMO. The key points are summarized in Section 1.4.

4In communications, a factor ten is called one order-of-magnitude, while a factor
100 stands for two orders-of-magnitude and so on.
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1.1 Cellular Networks

Wireless communication is based on radio, meaning that electromagnetic
(EM) waves are designed to carry information from a transmitter to
one or multiple receivers. Since the EM waves propagate in all possible
directions from the transmitter, the signal energy spreads out and less
energy reaches a desired receiver as the distance increases. To deliver
wireless services with sufficiently high received signal energy over wide
coverage areas, researchers at Bell Labs postulated in 1947 that a cellular
network topology is needed [277]. According to this idea, the coverage
area is divided into cells that operate individually using a fixed-location
base station; that is, a piece of network equipment that facilitates
wireless communication between a device and the network. The cellular
concept was further developed and analyzed over the subsequent decades
[291, 116, 204, 364] and later deployed in practice. Without any doubt,
the cellular concept was a major breakthrough and has been the main
driver to deliver wireless services in the last forty years (since the “first
generation” of mobile phone systems emerged in the 1980s). In this
monograph, a cellular network is defined as follows.

Definition 1.1 (Cellular network). A cellular network consists of a set
of base stations (BSs) and a set of user equipments (UEs).5 Each UE is
connected to one of the BSs, which provides service to it. The downlink
(DL) refers to signals sent from the BSs to their respective UEs, while
the uplink (UL) refers to transmissions from the UEs to their respective
BSs.6

While this definition specifies the setup that we will study, it does
not cover every aspect of cellular networks; for example, to enable
efficient handover between cells, a UE can momentarily be connected
to multiple BSs.

5The terms BS and UE stem from GSM and LTE standards, respectively, but
are used in this monograph without any reference to particular standards.

6In a fully cooperative cellular network, called network MIMO [126] or cell-free
system [240], all BSs are connected to a central processing site and are used to jointly
serve all UEs in the network. In this case, the DL (UL) refers to signals transmitted
from (to) all the BSs to (from) each UE. Such a cellular network is not the focus of
this monograph, but cell-free systems are briefly described in Section 7.4.3 on p. 509.
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Base
station

User equipment

Figure 1.1: A basic cellular network, where each BS covers a distinct geographical
area and provides service to all UEs in it. The area is called a “cell” and is illustrated
with a distinct color. The cell may consist of all geographic locations where this BS
provides the strongest DL signal.

An illustration of a cellular network is provided in Figure 1.1. This
monograph focuses on the wireless communication links between BSs
and UEs, while the remaining network infrastructure (e.g., fronthaul,
backhaul, and core network) is assumed to function perfectly. There
are several branches of wireless technologies that are currently in use,
such as the IEEE 802.11 family for WiFi wireless local area networks
(WLANs), the 3rd Generation Partnership Project (3GPP) family with
GSM/UMTS/LTE for mobile communications [128], and the competing
3GPP2 family with IS-95/CDMA2000/EV-DO. Some standards within
these families are evolutions of each other, optimized for the same use
case, while others are designed for different use cases. Together they
form a heterogeneous network consisting of two main tiers:

1. Coverage tier: Consisting of outdoor cellular BSs that provide
wide-area coverage, mobility support, and are shared between
many UEs;

2. Hotspot tier: Consisting of (mainly) indoor BSs that offer high
throughput in small local areas to a few UEs.

The term “heterogeneous” implies that these two tiers coexist in the
same area. In particular, the hotspot BSs are deployed to create small
cells (SCs) within the coverage area of the cellular BSs, as illustrated in
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BS in coverage tier BS in hotspot tier UE in any tier

Figure 1.2: Current wireless networks are heterogeneous since a tier of SCs is
deployed to offload traffic from the coverage tier. BSs in the coverage tier and in
the hotspot tier are depicted differently, as shown in the figure. To improve the
area throughput of the coverage tier, it is particularly important to increase the
SE, because densification and the use of additional bandwidth at higher frequencies
would degrade mobility support and coverage.

Figure 1.2. The two tiers may utilize the same frequency spectrum, but,
in practice, it is common to use different spectrum to avoid inter-tier
coordination; for example, the coverage tier might use LTE and operate
in the 2.1GHz band, while the hotspot tier might use WiFi in the 5GHz
band.

Cellular networks were originally designed for wireless voice commu-
nications, but it is wireless data transmissions that dominate nowadays
[109]. Video on-demand accounts for the majority of traffic in wireless
networks and is also the main driver of the predicted increase in traffic
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demand [86]. The area throughput is thus a highly relevant performance
metric of contemporary and future cellular networks. It is measured in
bit/s/km2 and can be modeled using the following high-level formula:

Area throughput [bit/s/km2] =
B [Hz] ·D [cells/km2] · SE [bit/s/Hz/cell] (1.1)

where B is the bandwidth, D is the average cell density, and SE is the
SE per cell. The SE is the amount of information that can be transferred
per second over one Hz of bandwidth, and it is later defined in detail in
Section 1.2.

These are the three main components that determine the area
throughput, and that need to be increased in order to achieve higher
area throughput in future cellular networks. This principle applies to
the coverage tier as well as to the hotspot tier. Based on (1.1), one can
think of the area throughput as being the volume of a rectangular box
with sides B, D, and SE; see Figure 1.3. There is an inherent dependence
between these three components in the sense that the choice of frequency
band and cell density affects the propagation conditions; for example,
the probability of having a line-of-sight (LoS) channel between the
transmitter and receiver (and between out-of-cell interferers and the
receiver), the average propagation losses, etc. However, one can treat
these three components as independent as a first-order approximation to
gain basic insights. Consequently, there are three main ways to improve
the area throughput of cellular networks:

1. Allocate more bandwidth;

2. Densify the network by deploying more BSs;

3. Improve the SE per cell.
The main goal of this section is to demonstrate how we can achieve

major improvements in SE. These insights are then utilized in Section 2
on p. 216 to define the Massive MIMO technology.

1.1.1 Evolving Cellular Networks for Higher Area Throughput

Suppose, for the matter of argument, that we want to design a new
cellular network that improves the area throughput by a factor of 1000
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Bandwidth
(B)

Average cell 
density (D)

Spectral ef f iciency (SE)

Volume = Area throughput

Figure 1.3: The area throughput can be computed according to (1.1) as the volume
of a rectangular box where the bandwidth, average cell density, and SE are the length
of each side.

over existing networks; that is, to solve “the 1000× data challenge”
posed by Qualcomm [271]. Note that such a network can handle the
three orders-of-magnitude increase in wireless data traffic that will occur
over the next 15–20 years, if the annual traffic growth rate continues
to be in the range of 41%–59%. How can we handle such a huge traffic
growth according to the formula in (1.1)?

One potential solution would be to increase the bandwidth B by
1000×. Current cellular networks utilize collectively more than 1GHz of
bandwidth in the frequency range below 6GHz. For example, the telecom
operators in Sweden have licenses for more than 1GHz of spectrum
[65], while the corresponding number in USA is around 650MHz [30].
An additional 500MHz of spectrum is available for WiFi [65]. This
means that a 1000× increase corresponds to using more than 1THz
of bandwidth in the future. This is physically impractical since the
frequency spectrum is a global resource that is shared among many
different services, and also because it entails using much higher frequency
bands than in the past, which physically limits the range and service
reliability. There are, however, substantial bandwidths in the millimeter
wavelength (mmWave) bands (e.g., in the range 30–300GHz) that can be
used for short-range applications. These mmWave bands are attractive
in the hotspot tier, but less so in the coverage tier since the signals at
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those frequencies are easily blocked by objects and human bodies and
thus cannot provide robust coverage.

Another potential solution would be to densify the cellular network
by deploying 1000× more BSs per km2. The inter-BS distances in the
coverage tier are currently a few hundred meters in urban areas and
the BSs are deployed at elevated locations to avoid being shadowed
by large objects and buildings. This limits the number of locations
where BSs can be deployed in the coverage tier. It is hard to densify
without moving BSs closer to UEs, which leads to increased risks of
being in deep shadow, thereby reducing coverage. Deploying additional
hotspots is a more viable solution. Although WiFi is available almost
everywhere in urban areas, the average inter-BS distance in the hotspot
tier can certainly shrink down to tens of meters in the future. Reusing
the spectrum from the coverage tier or using mmWave bands in these
SCs can also bring substantial improvements to the area throughput
[197]. Nevertheless, this solution is associated with high deployment
costs, inter-cell interference issues [19], and is not suitable for mobile
UEs, which would have to switch BS very often. Note that even under
a substantial densification of the hotspot tier, the coverage tier is still
required to support mobility and avoid coverage holes.

Higher cell density and larger bandwidth have historically domi-
nated the evolution of the coverage tier, which explains why we are
approaching a saturation point where further improvements are in-
creasingly complicated and expensive. However, it might be possible
to dramatically improve the SE of future cellular networks. This is
particularly important for BSs in the coverage tier that, as explained
above, can neither use mmWave bands nor rely on network densification.
Increasing the SE corresponds to using the BSs and bandwidth that
are already in place more efficiently by virtue of new modulation and
multiplexing techniques. The principal goal is to select a rectangular
box, as illustrated in Figure 1.4, where each side represents the multi-
plicative improvement in either B, D, or SE. As shown in the figure,
there are different ways to choose these factors in order to achieve 1000×
higher area throughput. A pragmatic approach is to first investigate how
much the SE can be improved towards the 1000× goal and then jointly
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10×

10×

10×

(a) Equal improvement.
25×

8×5×

(b) Improving some factors more than others.

Figure 1.4: Examples of different ways to achieve a 1000× improvement in area
throughput. Each side of the rectangular box represents an improvement factor in
either B, D, or SE in (1.1), and their multiplication (i.e., the volume) equals 1000×.

increase B and D to take care of the remaining part of the ambitious
final goal. Section 4 on p. 275 shows why Massive MIMO is considered
the most promising technology for improving the SE in future cellular
networks.

Remark 1.1 (Massive MIMO versus SCs in mmWave bands). This mono-
graph focuses on the coverage tier, which will remain the most chal-
lenging tier in the future since it should provide ubiquitous coverage,
support mobility, and simultaneously deliver a uniform service quality
within each cell. All of this must be achieved without any substantial
densification or use of mmWave spectrum because that would inevitably
result in patchy coverage. This is why major improvements in SE are
needed. We will demonstrate that Massive MIMO can deliver that. In
contrast, the main purpose of the hotspot tier is to reduce the pressure
on the coverage tier by offloading a large portion of the traffic from
low-mobility UEs. Since only short-range best-effort communications
must be supported, this tier can be enhanced by straightforward cell
densification and by using the large bandwidths available in mmWave
bands. The use of Massive MIMO in mmWave bands will be discussed
in Section 7.5 on p. 522, while the combination of Massive MIMO and
SCs is considered in Section 7.6 on p. 527.
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1.2 Definition of Spectral Efficiency

We now provide a definition of SE for a communication channel with a
bandwidth of B Hz. The Nyquist-Shannon sampling theorem implies
that the band-limited communication signal that is sent over this channel
is completely determined by 2B real-valued equal-spaced samples per
second [298]. When considering the complex-baseband representation
of the signal, B complex-valued samples per second is the more natural
quantity [314]. These B samples are the degrees of freedom available
for designing the communication signal. The SE is the amount of
information that can be transferred reliably per complex-valued sample.

Definition 1.2 (Spectral efficiency). The SE of an encoding/decoding
scheme is the average number of bits of information, per complex-
valued sample, that it can reliably transmit over the channel under
consideration.

From this definition, it is clear that the SE is a deterministic number
that can be measured in bit per complex-valued sample. Since there are
B samples per second, an equivalent unit of the SE is bit per second
per Hertz, often written in short-form as bit/s/Hz. For fading channels,
which change over time, the SE can be viewed as the average number of
bit/s/Hz over the fading realizations, as will be defined below. In this
monograph, we often consider the SE of a channel between a UE and a
BS, which for simplicity we refer to as the “SE of the UE”. A related
metric is the information rate [bit/s], which is defined as the product
of the SE and the bandwidth B. In addition, we commonly consider
the sum SE of the channels from all UEs in a cell to the respective BS,
which is measured in bit/s/Hz/cell.

The channel between a transmitter and a receiver at given loca-
tions can support many different SEs (depending on the chosen encod-
ing/decoding scheme), but the largest achievable SE is of key importance
when designing communication systems. The maximum SE is deter-
mined by the channel capacity, which was defined by Claude Shannon
in his seminal paper [297] from 1948. The following theorem provides
the capacity for the channel illustrated in Figure 1.5.
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y
Channel

Input Output

x

Figure 1.5: A general discrete memoryless channel with input x and output y.

Theorem 1.1 (Channel capacity). Consider a discrete memoryless chan-
nel with input x and output y, which are two random variables. Any
SE smaller or equal to the channel capacity

C = sup
f(x)

(H(y)−H(y|x)
)

(1.2)

is achievable with arbitrarily low error probability, while larger values
cannot be achieved. The supremum is taken with respect to all feasible
input distributions f(x), while H(y) is the differential entropy of the
output and H(y|x) is the conditional differential entropy of the output
given the input.

The terminology of discrete memoryless channels and entropy is
defined in Appendix B.5 on p. 572. We refer to [297] and textbooks
on information theory, such as [94], for the proof of Theorem 1.1. The
set of feasible input distributions depends on the application, but it is
common to consider all distributions that satisfy a constraint on the
input power. In wireless communications, we are particularly interested
in channels where the received signal is the superposition of a scaled
version of the desired signal and additive Gaussian noise. These channels
are commonly referred to as additive white Gaussian noise (AWGN)
channels. The channel capacity in Theorem 1.1 can be computed in
closed form in the following canonical case from [298], which is also
illustrated in Figure 1.6.

Corollary 1.2. Consider a discrete memoryless channel with input x ∈ C
and output y ∈ C given by

y = hx+ n (1.3)

where n ∼ NC(0, σ2) is independent noise. The input distribution is
power-limited as E{|x|2} ≤ p and the channel response h ∈ C is known
at the output.
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Figure 1.6: A discrete memoryless channel with input x and output y = hx+ n,
where h is the channel response and n is independent Gaussian noise.

If h is deterministic, then the channel capacity is

C = log2

(
1 + p|h|2

σ2

)
(1.4)

and is achieved by the input distribution x ∼ NC(0, p).
If h is a realization of a random variable H that is independent of

the signal and noise, then the ergodic7 channel capacity is

C = E
{

log2

(
1 + p|h|2

σ2

)}
(1.5)

where the expectation is with respect to h. This is called a fading channel
and the capacity is achieved by the input distribution x ∼ NC(0, p).

Proof. The proof is available in Appendix C.1.1 on p. 579.

The channel considered in Corollary 1.2 is called a single-input
single-output (SISO) channel because one input signal is sent and
results in one output signal. An average power constraint is assumed
in the corollary and throughout this monograph, but other constraints
also exist in practice; see Remark 7.1 on p. 460 for a further discussion.
The practical meaning of the channel capacity can be described by
considering the transmission of an information sequence with N scalar
inputs, generated by an ergodic stochastic process, over the discrete

7The capacity of a fading channel requires that the transmission spans asymptot-
ically many realizations of the random variable that describes the channel. This is
referred to as the ergodic capacity since a stationary ergodic random fading process
is required if the statistical properties shall be deducible from a single sequence of
channel realizations. Each channel realization is used for a predetermined and finite
number of input signals, then a new realization is taken from the random process.



170 Introduction and Motivation

memoryless channel in Corollary 1.2. If the scalar input has an SE
smaller or equal to the capacity, the information sequence can be
encoded such that the receiver can decode it with arbitrarily low error
probability as N → ∞. In other words, an infinite decoding delay is
required to achieve the capacity. The seminal work in [267] quantifies
how closely the capacity can be approached at a finite length of the
information sequence. The SE is generally a good performance metric
whenever data blocks of thousands of bits are transmitted [50].

The capacity expressions in (1.4) and (1.5) have a form that is
typical for communications: the base-two logarithm of one plus the
signal-to-noise ratio (SNR)-like expression

Received signal power︷ ︸︸ ︷
p|h|2
σ2
︸︷︷︸

Noise power

. (1.6)

This is the actual measurable SNR for a deterministic channel response
h, while it is the instantaneous SNR for a given channel realization
when h is random. Since the SNR fluctuates in the latter case, it is more
convenient to consider the average SNR when describing the quality of
a communication channel. We define the average SNR as

SNR = pE{|h|2}
σ2 (1.7)

where the expectation is computed with respect to the channel realiza-
tions. We call E{|h|2} the average channel gain since it is the average
scaling of the signal power incurred by the channel.

Transmissions in cellular networks are in general corrupted by in-
terference from simultaneous transmissions in the same and other cells.
By adding such interference to the channel in Figure 1.6, we obtain the
discrete memoryless interference channel in Figure 1.7. The interference
is not necessarily independent of the input x and the channel h. The
exact channel capacity of interference channels is generally unknown,
but convenient lower bounds can be obtained. Inspired by [36, 214], the
following corollary provides the lower capacity bounds that will be used
repeatedly in this monograph.
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Figure 1.7: A discrete memoryless interference channel with input x and output
y = hx+ υ + n, where h is the channel response, n is independent Gaussian noise,
and υ is the interference, which is uncorrelated with the input and the channel.

Corollary 1.3. Consider a discrete memoryless interference channel with
input x ∈ C and output y ∈ C given by

y = hx+ υ + n (1.8)
where n ∼ NC(0, σ2) is independent noise, the channel response h ∈ C
is known at the output, and υ ∈ C is random interference. The input is
power-limited as E{|x|2} ≤ p.

If h is deterministic and the interference υ has zero mean, a known
variance pυ ∈ R+, and is uncorrelated with the input (i.e., E{x?υ} = 0),
then the channel capacity C is lower bounded as

C ≥ log2

(
1 + p|h|2

pυ + σ2

)
(1.9)

where the bound is achieved using the input distribution x ∼ NC(0, p).
Suppose h ∈ C is instead a realization of the random variable H and

that U is a random variable with realization u that affects the interfer-
ence variance. The realizations of these random variables are known at
the output. If the noise n is conditionally independent of υ given h and
u, the interference υ has conditional zero mean (i.e., E{υ|h, u} = 0) and
conditional variance denoted by pυ(h, u) = E{|υ|2|h, u}, and the interfer-
ence is conditionally uncorrelated with the input (i.e., E{x?υ|h, u} = 0),
then the ergodic8 channel capacity C is lower bounded as

C ≥ E
{

log2

(
1 + p|h|2

pυ(h, u) + σ2

)}
(1.10)

8When transmitting an information sequence over this fading channel, a sequence
of realizations of H and U is created, forming stationary ergodic random processes.
Each set of realizations (h, u) is used for a predetermined and finite number of input
signals, then a new set of realizations is taken from the random processes.
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where the expectation is taken with respect to h and u, and the bound
is achieved using the input distribution x ∼ NC(0, p).

Proof. The proof is available in Appendix C.1.2 on p. 580.

Note that in Corollary 1.3, we use the shorthand notation E{υ|h, u}
for the conditional expectation E{υ|H = h,U = u}. For notational
convenience, we will from now on omit the random variables in similar
expressions and only write out the realizations.

The lower bounds on the channel capacity in Corollary 1.3 are
obtained by treating the interference as an additional source of noise in
the decoder, which might not be optimal from an information-theoretic
point of view. For example, if an interfering signal is very strong, then
one can potentially decode it and subtract the interference from the
received signal, before decoding the desired signal. This is conceptually
simple, but harder to perform in a practical cellular network, where
the interfering signals change over time and the cells are not fully
cooperating. In fact, there should not be any strongly interfering signal
in a well-designed cellular network. In the low-interference regime, it
is optimal (i.e., capacity-achieving) to treat interference as additional
noise, as shown in [230, 296, 20, 21, 295].

We utilize SE expressions of the type in Corollary 1.3 throughout
this monograph and stress that these might not be the highest achievable
SEs, but SEs that can be achieved by low-complexity signal processing
in the receiver, where interference is treated as noise. The SE expressions
in (1.9) and (1.10) have a form typical for wireless communications: the
base-two logarithm of one plus the expression

SINR =

Received signal power︷ ︸︸ ︷
p|h|2

pυ︸︷︷︸
Interference power

+ σ2
︸︷︷︸

Noise power

(1.11)

that can be interpreted as the signal-to-interference-plus-noise ratio
(SINR). Formally, this is only an SINR when h and pυ are deterministic;
the expression is otherwise random. For simplicity, we will refer to
any term a that appears as E{log2(1 + a)} in an SE expression as an
instantaneous SINR (with slight abuse of terminology).
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The SE expressions presented in this section are the fundamental
building blocks for the theory developed in later sections. The capacity
results consider discrete memoryless channels, which are different from
practical continuous wireless channels. However, the bandwidth B can
be divided into narrow subchannels (e.g., using orthogonal frequency-
division multiplexing (OFDM)) that are essentially memoryless if the
symbol time is much longer than the delay spread of the propagation
environment [314].

1.3 Ways to Improve the Spectral Efficiency

There are different ways to improve the per-cell SE in cellular networks.
In this section, we will compare different approaches to showcase which
ones are the most promising. For simplicity, we consider a two-cell
network where the average channel gain between a BS and every UE in
a cell is identical, as illustrated in Figure 1.8. This is a tractable model
for studying the basic properties of cellular communications, due to
the small number of system parameters. It is an instance of the Wyner
model, initially proposed by Aaron Wyner in [353] and studied for fading
channels in [304]. It has been used extensively to study the fundamental
information-theoretic properties of cellular networks; see the monograph
[303] and references therein. More realistic, but less tractable, network
models will be considered in later sections.

In the UL scenario shown in Figure 1.8, the UEs in cell 0 transmit
to their serving BS, while the UL signals from the UEs in cell 1 leak
into cell 0 as interference. The average channel gain from a UE in cell 0
to its serving BS is denoted by β0

0 , while the interfering signals from
UEs in cell 1 have an average channel gain of β0

1 . Similarly, the average
channel gain from a UE in cell 1 to its serving BS is denoted by β1

1 ,
while the interfering signals from UEs in cell 0 have an average channel
gain of β1

0 . Notice that the superscript indicates the cell of the receiving
BS and the subscript indicates the cell that the transmitting UE resides
in. The average channel gains are positive dimensionless quantities that
are often very small since the signal energy decays quickly with the
propagation distance; values in the range from −70 dB to −120 dB are
common within the serving cell, while even smaller values appear for
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Interfering signal

Cell 0

Cell 1

β0
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β0
0
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Figure 1.8: Illustration of the notion of desired and interfering UL signals in a
two-cell network. In the Wyner model, every UE in cell 0 has the same value of the
average channel gain β0

0 from its serving BS and of the average channel gain β1
0 to

the other-cell BS, while every UE in cell 1 has the same value of β0
1 and β1

1 .

interfering signals. As shown later, it is not the absolute values that are
of main importance when computing the SE, but the relative strength
of the interference as compared to the desired signals. For simplicity, we
assume that the intra-cell channel gains are equal (i.e., β0

0 = β1
1) and

that the inter-cell channel gains are equal as well (i.e., β0
1 = β1

0); this is
commonly assumed in the Wyner model. We can then define the ratio
β̄ between the inter-cell and intra-cell channel gains as

β̄ = β0
1
β0

0
= β1

0
β0

0
= β0

1
β1

1
= β1

0
β1

1
. (1.12)

This ratio will be used in the analysis of both UL and DL. We typically
have 0 ≤ β̄ ≤ 1, where β̄ ≈ 0 corresponds to a negligibly weak inter-cell
interference and β̄ ≈ 1 means that the inter-cell interference is as strong
as the desired signals (which may happen for UEs at the cell edge). We
will use this model in the remainder of Section 1, to discuss different
ways to improve the SE per cell.

1.3.1 Increase the Transmit Power

The SE naturally depends on the strength of the received desired signal,
represented by the average SNR, defined in (1.7). Using the Wyner
model described above, the average SNR of a UE in cell 0 is

SNR0 = p

σ2β
0
0 (1.13)

where p denotes the UE’s transmit power and σ2 is the noise power.
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These power quantities are measured in Joule per time interval. Any
type of time interval can be utilized as long as it is the same for both
the signal and the noise, but common choices are “one second” or “one
sample”. The parameter SNR0 plays a key role in many of the expressions
computed in this section.

Assume that there is one active UE per cell and that each BS and
UE is equipped with a single antenna. Notice that with “antenna” we
refer to a component with a size that is smaller than the wavelength
(e.g., a patch antenna) and not the type of large high-gain antennas
that are used at the BSs in conventional cellular networks. Antennas
and antenna arrays are further discussed in Section 7.4 on p. 500.

Focusing on a flat-fading9 wireless channel, the symbol-sampled
complex-baseband signal y0 ∈ C received at the BS in cell 0 is

y0 = h0
0s0︸ ︷︷ ︸

Desired signal

+ h0
1s1︸ ︷︷ ︸

Interfering signal

+ n0︸︷︷︸
Noise

(1.14)

where the additive receiver noise is modeled as n0 ∼ NC(0, σ2). The
scalars s0, s1 ∼ NC(0, p) in (1.14) represent the information signals10
transmitted by the desired and interfering UEs, respectively. More-
over, their channel responses are denoted by h0

0 ∈ C and h0
1 ∈ C,

respectively. The properties of these channel responses depend on the
propagation environment. In this section, we consider one model of LoS
propagation and one model of non-line-of-sight (NLoS) propagation.
In single-antenna LoS propagation, h0

0 and h0
1 are deterministic scalars

corresponding to the square-root of the (average) channel gains:

h0
i =

√
β0
i for i = 0, 1. (1.15)

In general, the channel response will also have a phase rotation, but
it is neglected here since it does not affect the SE. The channel gain

9In flat-fading channels, the coherence bandwidth of the channel is larger than
the signal bandwidth [314]. Therefore, all frequency components of the signal will
experience the same magnitude of fading, resulting in a scalar channel response.

10The information signals are assumed to be complex Gaussian distributed since
this maximizes the differential entropy of the signal (see Lemma B.21 on p. 574) and
achieves the capacity in interference-free scenarios (see Corollary 1.2). In practice,
quadrature amplitude modulation (QAM) schemes with finite number of constellation
points are commonly used, which leads to a small shaping-loss as compared to having
infinitely many constellation points from a Gaussian distribution.
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β0
i can be interpreted as the macroscopic large-scale fading in LoS

propagation, caused by distance-dependent pathloss. The impact of
the transceiver hardware, including the antenna gains, is also absorbed
into this parameter. The parameter is constant if the transmitter and
receiver are fixed, while it changes if the transmitter and/or receiver
move. Microscopic movements (at the order of the wavelength) can be
modeled as phase-rotations in h0

i , while large movements (at the order
of meters) lead to substantial changes in β0

i . We consider a fixed value of
h0
i in order to apply the SE expression in Corollary 1.3 for deterministic

channels.
In NLoS propagation environments, the channel responses are ran-

dom variables that change over time and frequency. If there is sufficient
scattering between the UEs and the BS, then h0

0 and h0
1 are well-modeled

as
h0
i ∼ NC

(
0, β0

i

)
for i = 0, 1 (1.16)

as validated by the channel measurements reported in [337, 177, 83,
365]. The transmitted signal reaches the receiver through many different
paths and the superimposed received signals can either reinforce or
cancel each other. When the number of paths is large, the central limit
theorem motivates the use of a Gaussian distribution. This phenomenon
is known as small-scale fading and is a microscopic effect caused by
small variations in the propagation environment (e.g., movement of
the transmitter, receiver, or other objects). In contrast, the variance
β0
i is interpreted as the macroscopic large-scale fading, which includes

distance-dependent pathloss, shadowing, antenna gains, and penetration
losses in NLoS propagation. The channel model in (1.16) is called
Rayleigh fading, because the magnitude |h0

i | is a Rayleigh distributed
random variable.

Notice that the average channel gain is E{|h0
i |2} = β0

i , for i = 0, 1,
in both propagation cases in order to make them easily comparable.
Practical channels can contain a mix of a deterministic LoS component
and a random NLoS component, but, by studying the differences between
the two extreme cases, we can predict what will happen in the mixed
cases as well. The following lemma provides closed-form SE expressions
for the LoS and NLoS cases.



1.3. Ways to Improve the Spectral Efficiency 177

Lemma 1.4. Suppose the BS in cell 0 knows the channel responses. An
achievable11 UL SE for the desired UE in the LoS case is

SELoS
0 = log2

(
1 + 1

β̄ + 1
SNR0

)
(1.17)

with β̄ and SNR0 given by (1.12) and (1.13), respectively. In the NLoS
case (with β̄ 6= 1), an achievable UL SE is

SENLoS
0 = E

{
log2

(
1 + p|h0

0|2
p|h0

1|2 + σ2

)}

=
e

1
SNR0E1

(
1

SNR0

)
− e

1
SNR0β̄E1

(
1

SNR0β̄

)

loge(2)
(
1− β̄

) (1.18)

where E1(x) =
∫∞

1
e−xu
u du denotes the exponential integral and loge(·)

denotes the natural logarithm.
Proof. The proof is available in Appendix C.1.3 on p. 582.

This lemma shows that the SE is fully characterized by the SNR
of the desired signal, SNR0, and the relative strength of the inter-cell
interference, β̄. Note that the closed-form NLoS expression in (1.18)
only applies for β̄ 6= 1. Recall that 0 ≤ β̄ ≤ 1 is the typical range of
β̄. The pathological case β̄ = 1 represents a cell-edge scenario where
the desired and interfering signals are equally strong. An alternative
expression can be derived for β̄ = 1, using the same methodology as in
the proof of Lemma 1.4, but it does not provide any further insights
and is therefore omitted.

The SE is naturally an increasing function of the SNR, which is
most easily seen from the LoS expression in (1.17), where the SE is the
logarithm of the following SINR expression:

1
β̄ + 1

SNR0

=

Signal power︷︸︸︷
pβ0

0
pβ0

1︸︷︷︸
Interference power

+ σ2
︸︷︷︸

Noise power

. (1.19)

11Recall that an SE is achievable if there exists a sequence of codes such that the
maximum probability of error in transmission for any message of length N converges
to zero as N →∞ [94]. Any SE smaller or equal to the capacity is thus achievable.
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Figure 1.9: Average UL SE as a function of the SNR for different cases of inter-cell
interference strength, β̄ ∈ {−10,−30} dB, and different channel models.

One can improve the SE by increasing the transmit power p. However,
the SE will not increase indefinitely with p. In the LoS case, we have

SELoS
0 → log2

(
1 + 1

β̄

)
as p→∞ (1.20)

where the limit is completely determined by the strength of the inter-
ference. This is due to the fact that the desired UE and the interfering
UE both increase their transmit powers, which is the case of interest in
cellular networks since good service quality should be guaranteed in all
cells. The corresponding limit in the NLoS case is

SENLoS
0 → 1

1− β̄ log2

( 1
β̄

)
as p→∞ (1.21)

which can be proved by expanding the exponential integrals in (1.18)
using the identity in [3, Eq. (5.1.11)] and then taking the limit p→∞.

To exemplify these behaviors, Figure 1.9 shows the SE as a function
of the SNR, where an SNR increase is interpreted as increasing the
transmit power p. We consider two different strengths of the inter-
cell interference: β̄ = −10dB and β̄ = −30dB. The SE converges
quickly to the LoS limit log2(1 + 1/β̄) ≈ 3.46bit/s/Hz and the NLoS
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limit log2(1/β̄)/(1 − β̄) ≈ 3.69bit/s/Hz in the former case, since the
interference is only 10 dB weaker than the desired signal. In the case of
β̄ = −30 dB, the convergence to the LoS limit 9.97 bit/s/Hz and NLoS
limit 9.98bit/s/Hz is less visible in the considered SNR range, since
the interference is weaker and the logarithm makes the SE grow slowly.
Nevertheless, we notice that going from SNR0 = 10 dB to SNR0 = 30 dB
only doubles the SE, though 100 times more transmit power is required.
The NLoS case provides slightly lower SE than the LoS case for most
SNRs, due to the random fluctuations of the squared magnitude |h0

0|2
of the channel. However, the randomness turns into a small advantage
at high SNR, where the limit is slightly higher in NLoS because the
interference can be much weaker than the signal for some channel
realizations. This behavior is seen for β̄ = −10dB in Figure 1.9, while
it occurs at higher SNRs for β̄ = −30 dB.

In summary, increasing the SNR by using more transmit power
improves the SE, but the positive effect quickly pushes the network
into an interference-limited regime where no extraordinary SEs can be
obtained. This is basically because of the lack of degrees of freedom at
the BS, which cannot separate the desired signal from the interference
from a single observation.12 This interference-limited regime is where
the coverage tier operates in current networks, while the situation for
the hotspot tier depends on how the BSs are deployed. For example, the
signals at mmWave frequencies are greatly attenuated by walls and other
objects. A mmWave SC will typically cover a very limited area, but on
the other hand the cell might be noise-limited since the interfering signals
from SCs in other rooms are also attenuated by walls. The SE range in
Figure 1.9 is comparable to what contemporary networks deliver (e.g.,
0–5 bit/s/Hz in LTE [144]). Hence, a simple power-scaling approach
cannot contribute much to achieving higher SE in cellular networks.

Remark 1.2 (Increasing cell density). Another way to increase the SNR
is to keep the transmit power fixed and increase the cell density D

12The transmission scheme considered in this example is not optimal. The UEs
could take turns in transmitting, thereby achieving an SE that grows without bound,
but with a pre-log factor of 1/2 if each UE is active 50% of the time. More generally,
interference alignment methods can be used to handle the interference [70].



180 Introduction and Motivation

instead. It is commonly assumed in channel modeling that the average
channel gain is inversely proportional to the propagation distance to
some fixed “pathloss” exponent. Under such a basic propagation model,
the power of the received desired signal and the inter-cell interference
increase at roughly the same pace when D is increased, since both the
distance to the desired BS and the interfering BSs are reduced. This
implies that the interference-limited SE limit is obtained also when
D increases. While D cannot be much increased in the coverage tier,
cell densification is a suitable way to improve the hotspot tier [198];
the area throughput in (1.1) increases linearly with D as long as the
basic propagation model holds true. At some point, this model will,
however, become invalid since the pathloss exponent will also reduce
with the distance and approach the free-space propagation scenario
with an exponent of two [19]. Cell densification is no longer desired in
this extreme short-range scenario since the sum power of the interfering
signals increase faster than the desired signal power.

1.3.2 Obtain an Array Gain

Instead of increasing the UL transmit power, the BS can deploy multiple
receive antennas to collect more energy from the EM waves. This concept
has at least been around since the 1930s [257, 117], with the particular
focus on achieving spatial diversity; that is, to combat the channel fading
in NLoS propagation by deploying multiple receive antennas that observe
different fading realizations. The related idea of using multiple transmit
antennas to increase the received signal power was described as early
as 1919 [10]. Having multiple receive antennas also allows the receiver
to distinguish between signals with different spatial directivity by using
spatial filtering/processing [324]. Implementations of these methods have
been referred to as “adaptive” or “smart” antennas [16, 350]. In general,
it is more convenient to equip the BSs with multiple antennas than
the UEs, because the latter are typically compact commercial end-user
products powered by batteries and relying on low-cost components.

Suppose the BS in cell 0 is equipped with an array of M antennas.
The channel responses from the desired and interfering UEs can then
be represented by the vectors h0

0 ∈ CM and h0
1 ∈ CM , respectively. The
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mth element of each vector is the channel response observed at the mth
BS antenna, for m = 1, . . . ,M . The scalar received UL signal in (1.14)
is then extended to a received vector y0 ∈ CM , modeled as

y0 = h0
0s0︸ ︷︷ ︸

Desired signal

+ h0
1s1︸ ︷︷ ︸

Interfering signal

+ n0︸︷︷︸
Noise

(1.22)

where n0 ∼ NC(0M , σ2IM ) is the receiver noise over the BS array and
the transmit signals s0 and s1 are defined as in (1.14).

To analyze the SE of this UL single-input multiple-output (SIMO)
channel with inter-cell interference, we need to extend the propagation
models to the multiple antenna case. In the LoS case, we consider a hor-
izontal uniform linear array (ULA) with antenna spacing dH ∈ (0, 0.5],
which is measured in the number of wavelengths between adjacent
antennas. Hence, if λ denotes the wavelength at the carrier frequency,
then the antenna spacing is λdH meters. Channel models for other array
geometries are considered in Section 7.3 on p. 482. We further assume
that the UEs are located at fixed locations in the far-field of the BS
array, which leads to the following deterministic channel response [254]:

h0
i =

√
β0
i

[
1 e2πjdH sin(ϕ0

i ) . . . e2πjdH(M−1) sin(ϕ0
i )
]T

for i = 0, 1 (1.23)

where ϕ0
i ∈ [0, 2π) is the azimuth angle to the UE, relative to the

boresight of the array at the BS in cell 0, and β0
i describes the macro-

scopic large-scale fading. The channel response in (1.23) can also have
a common phase rotation of all elements, but it is neglected here since
it does not affect the SE. The LoS propagation model is illustrated
in Figure 1.10, where a plane wave reaches the array from a generic
azimuth angle ϕ. When comparing two adjacent antennas, one of them
observes a signal that has traveled dH sin(ϕ) longer than the other one.
This leads to the array response in (1.23) with phase rotations that are
multiples of dH sin(ϕ), as also illustrated in Figure 1.10.

In the NLoS case, we assume for now that the channel response is
spatially uncorrelated over the array. This yields

h0
i ∼ NC

(
0M , β0

i IM
)

for i = 0, 1 (1.24)
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Figure 1.10: LoS propagation between a transmitting single-antenna UE and a BS
equipped with a ULA with M antennas. The antenna spacing is dH wavelengths, the
azimuth angle to the UE is ϕ, and the UE is located in the far-field of the array, so
that a plane wave reaches it. Note that the setup is illustrated from above.

where β0
i describes the macroscopic large-scale fading, while the random-

ness and Gaussian distribution account for the small-scale fading. This
channel model is called uncorrelated Rayleigh fading or independent
and identically distributed (i.i.d.) Rayleigh fading, since the elements
in h0

i are uncorrelated (and also independent) and have Rayleigh dis-
tributed magnitudes. Uncorrelated Rayleigh fading is a tractable model
for rich scattering conditions, where the BS array is surrounded by
many scattering objects, as compared to the number of antennas. We
will use it to describe the basic properties in this section, while a more
general and realistic model is introduced in Section 2.2 on p. 222 and
then used in the remainder of the monograph. Channel modeling is
further discussed in Section 7.3 on p. 482. The NLoS propagation model
with uncorrelated Rayleigh fading is illustrated in Figure 1.11. Notice
that the average channel gain β0

i is, for simplicity, assumed to be the
same for all BS antennas. This is a reasonable approximation when
the distance between the BS and UE is much larger than the distance
between the BS antennas. However, in practice, there can be several
decibels of channel gain variations between the antennas [122]. This fact
is neglected in this section, but has a strong impact on the SE when M
is large; see Section 4.4 on p. 335 for further details.
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Uplink signal
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Line of sight
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. .
 .

Figure 1.11: NLoS propagation with uncorrelated Rayleigh fading between a
transmitting single-antenna UE and a BS equipped with an array of M antennas.
The LoS path is blocked, but the signal finds multiple other paths via scattering
objects. The BS is surrounded by many scattering objects so that the UE location
has no impact on the spatial directivity of the received signal.

The benefits of having multiple antennas at the BS appear when
the BS knows the channel response of the desired UE. This knowledge
enables the BS to coherently combine the received signals from all
antennas. Estimation of the channel response is thus a key aspect in
multiantenna systems and will be further discussed in Section 1.3.5 and
later analyzed in detail in Section 3 on p. 244. For now, we assume that
the channel responses are known at the BS and can be used to select a
receive combining vector v0 ∈ CM . This vector is multiplied with the
received signal in (1.22) to obtain

vH
0y0 = vH

0h0
0s0︸ ︷︷ ︸

Desired signal

+ vH
0h0

1s1︸ ︷︷ ︸
Interfering signal

+ vH
0n0︸ ︷︷ ︸

Noise

. (1.25)

Receive combining is a linear projection, which transforms the SIMO
channel into an effective SISO channel that may support higher SEs
than in the single-antenna case, if the combining vector is selected
judiciously. There are many different combining schemes, but a simple
and popular one is maximum ratio (MR) combining, defined as

v0 = h0
0. (1.26)

This is a vector that maximizes the ratio |vH
0h0

0|2/‖v0‖2 between the
power of the desired signal and the squared norm of the combining
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vector [172, 68].13 The following lemma gives closed-form SE expressions
for the case of MR combining.

Lemma 1.5. Suppose the BS in cell 0 knows the channel responses and
applies MR combining to the received signal in (1.22). An achievable
UL SE for the desired UE in the LoS case is

SELoS
0 = log2

(
1 + M

β̄ g
(
ϕ0

0, ϕ
0
1
)

+ 1
SNR0

)
(1.27)

where the function g(ϕ,ψ) is defined as

g(ϕ,ψ) =





sin2
(
πdHM(sin(ϕ)−sin(ψ))

)

M sin2
(
πdH(sin(ϕ)−sin(ψ))

) if sin(ϕ) 6= sin(ψ)

M if sin(ϕ) = sin(ψ).
(1.28)

Similarly, an achievable UL SE for the desired UE in the NLoS case
(with β̄ 6= 1) is

SENLoS
0 =




1
(
1− 1

β̄

)M − 1



e

1
SNR0β̄E1

(
1

SNR0β̄

)

loge(2)

+
M∑

m=1

M−m∑

l=0

(−1)M−m−l+1
(
1− 1

β̄

)m

(
e

1
SNR0E1

(
1

SNR0

)
+

l∑
n=1

1
n

n−1∑
j=0

1
j!SNRj0

)

(M −m− l)! SNRM−m−l0 β̄ loge(2)
(1.29)

where n! denotes the factorial function and E1(x) =
∫∞

1
e−xu
u du denotes

the exponential integral.

Proof. The proof is available in Appendix C.1.4 on p. 583.

This lemma shows that the SE is characterized by the SNR of
the desired signal, SNR0, the strength of the inter-cell interference, β̄,
and the number of BS antennas, M . Notice that by having M receive
antennas, the array collects M times more energy from the desired

13The Cauchy-Schwartz inequality can be used to prove that v0 = h0
0 maximizes

the ratio |vH
0 h0

0|2/‖v0‖2.
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and interfering signals, and also from the noise. In the LoS case in
(1.27), the gain of the desired signal scales as M . The linear scaling
with the number of antennas is called array gain. It shows that MR
coherently combines all the received energy from the desired signal,
because the combining vector is matched to the channel response of
the desired UE. In contrast, MR combines the noise and the interfering
signal components non-coherently over the array since v0 is independent
of h0

1 and n0. As a consequence, the interference power β̄g
(
ϕ0

0, ϕ
0
1
)
in

(1.27) can be upper bounded as

β̄g(ϕ0
0, ϕ

0
1) ≤ β̄

M

1
sin2 (πdH

(
sin(ϕ0

0)− sin(ϕ0
1)
)) (1.30)

when sin(ϕ0
0) 6= sin(ϕ0

1), which decreases as 1/M when more receive
antennas are added. The basic reason that MR combining rejects the
interfering signal is that the M antennas provide the BS with M

spatial degrees of freedom, which can be used to separate the desired
signal from the interfering signal. In particular, the directions of the
LoS channel responses h0

0 and h0
1 gradually become orthogonal as M

increases. This property is called (asymptotically) favorable propagation
[245], since UEs with orthogonal channels can communicate with the
BS simultaneously without causing mutual interference. We will further
discuss this property in Section 1.3.3 and also in Section 2.5.2 on p. 233.

The equation sin(ϕ0
0) = sin(ϕ0

1) has two unique solutions: ϕ0
0 = ϕ0

1
and the mirror reflection ϕ0

0 = π − ϕ0
1. Hence, the ULA can only

uniquely resolve angles either in the interval [−π/2, π/2] or in the
interval [π/2, 3π/2] at the other side of the array. The discussion above
does not apply when sin(ϕ0

0) = sin(ϕ0
1), because then g(ϕ0

0, ϕ
0
1) = M

instead. It is natural that both the desired and the interfering signal scale
linearly with M in this case, because the two signals arrive from exactly
the same angle (or its mirror reflection). This will most likely never
happen in practice, but we can infer from (1.28) that the interference is
stronger when the UEs’ angles are similar to each other. For example,
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we can utilize the fact that sin(πz) ≈ πz for |z| < 0.2 to show that

g(ϕ,ψ) =
sin2 (πdHM(sin(ϕ)− sin(ψ))

)

M sin2 (πdH(sin(ϕ)− sin(ψ))
)

≈
(
πdHM(sin(ϕ)− sin(ψ))

)2

M
(
πdH(sin(ϕ)− sin(ψ))

)2 = M (1.31)

if dHM | sin(ϕ)− sin(ψ)| < 0.2. The angular interval for which this holds
becomes smaller as the aperture dHM of the ULA increases, but it exists
for any finite-sized array. Since it is dHM that determines the angular
resolution, the interference is reduced by either increasing the number
of antennas M and/or using a larger antenna spacing dH. This is in
contrast to the signal term, which is proportional only to the number of
antennas. For a given array aperture, it is therefore beneficial to have
many antennas rather than widely separated antennas. Note that we
have considered a two-dimensional LoS model in this section where only
the azimuth angle can differ between the UEs. In practice, UEs can also
have different elevation angles to the BS array and this can be exploited
to separate the UEs. These aspects will be discussed in more detail in
Section 7.4.2 on p. 503.

To illustrate these behaviors, the function g(ϕ0
0, ϕ

0
1) is shown in

Figure 1.12 for a desired UE at the fixed angle ϕ0
0 = 30◦, while the angle

of the interfering UE is varied between −180◦ and 180◦. The antenna-
spacing is dH = 1/2. In the single-antenna case, we have g(ϕ0

0, ϕ
0
1) = 1

irrespective of the angles, which is in line with Lemma 1.4. When the
BS has multiple antennas, g(ϕ0

0, ϕ
0
1) depends strongly on the individual

UE angles. There are interference peaks when the two UEs have the
same angle (i.e., ϕ0

1 = 30◦) and when the angles are each others’ mirror
reflections (i.e., ϕ0

1 = 180◦ − 30◦ = 150◦). The function is equal to M
at these peaks, because the interfering signal is coherently combined
by the MR combining (just as the desired signal). When the ULA
can resolve the individual UEs, the interference level instead decreases
rapidly (notice the logarithmic vertical scale) and gets generally smaller
as M increases. In these cases, the interference level oscillates as the
interfering UE’s angle is varied, but is approximately 1/M times weaker
than in the single-antenna case. Hence, the multiple BS antennas help to
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Figure 1.12: The function g(ϕ0
0, ϕ

0
1) in (1.28) that determines the interference level

in an LoS scenario. The desired UE is at the fixed angle ϕ0
0 = 30◦ and the interfering

UE has a varying angle ϕ0
1 ∈ [−180◦, 180◦].

suppress interference, as long as the UE angles are sufficiently different.
The SE in the NLoS case is harder to interpret since the closed-form

expression in (1.29) has a complicated structure with several summa-
tions and special functions. Fortunately, we can obtain the following
convenient lower bound that is very tight for M � 1 (see Figure 1.14
for a comparison).

Corollary 1.6. A lower bound on the UL SE in (1.29) for NLoS channels
is

SENLoS
0 = E





log2


1 + p‖h0

0‖2

p
|(h0

0)Hh0
1|2

‖h0
0‖2

+ σ2







≥ log2

(
1 + M − 1

β̄ + 1
SNR0

)
.

(1.32)

Proof. The proof is available in Appendix C.1.5 on p. 586.

The SE expression above can be interpreted similarly to the LoS
expression in (1.27); it is the logarithm of one plus an SINR expression
where the signal power increases as (M − 1). A linear array gain is thus
obtained for both LoS and NLoS channels. It is the lower-bounding
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Figure 1.13: CDF of the relative interference gain in (1.33), using logarithmic scale
on the horizontal axis. The randomness in the NLoS case is due to Rayleigh fading,
while it is due to random UE angles in the LoS cases. The percentages of realizations
when LoS gives higher interference gain than NLoS are indicated.

technique used in Corollary 1.6 that made the desired signal scale as
(M − 1), instead of M which is the natural array gain obtained with
MR combining. However, the difference is negligible when M is large.
The interference power in (1.32) is independent of M , in contrast to
the LoS case in (1.27) where it decays as 1/M . This scaling behavior
suggests that NLoS channels provide less favorable propagation than
LoS channels, but the reality is more complicated. To exemplify this,
Figure 1.13 shows the cumulative distribution function (CDF) of the
relative interference gain

1
β0

1

|(h0
0)Hh0

1|2
‖h0

0‖2
(1.33)

which determines how well interference is suppressed by MR combining.
For NLoS channels, (1.33) can be shown to have an Exp(1) distribu-

tion, irrespectively of the value ofM . In contrast, (1.33) equals g(ϕ0
0, ϕ

0
1)

in (1.28) for LoS channels, which is a function of M and the UE angles.
Figure 1.13 considers the LoS case with M = 10 and M = 100, and
shows the CDF over different uniformly distributed UE angles between
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0 and 2π (with dH = 1/2). The CDF of the small-scale fading with
NLoS channels is also shown. Figure 1.13 shows that LoS channels often
provide several orders-of-magnitude lower interference gains than NLoS
channels, but this only applies to the majority of random angle realiza-
tions. There is a small probability that the interference gain is larger in
LoS than in NLoS; it happens in 18% of the realizations with M = 10
and 4% of the realizations with M = 100. This corresponds to cases
when sin(ϕ0

0) ≈ sin(ϕ0
1) so that the array cannot resolve and separate

the UE angles. As discussed earlier, this occurs approximately when
dHM | sin(ϕ0

0)− sin(ϕ0
1)| < 0.2. This happens less frequently for random

angles as M increases (for fixed dH), since the array aperture grows
and thus obtains a better spatial resolution. Nevertheless, for any finite
M , there will be a small angular interval around ϕ0

0 where incoming
interference will be amplified just as the desired signal. Since the array is
unable to separate UEs with such small angle differences, time-frequency
scheduling might be needed to separate them; see Section 7.2.2 on p. 474
for further guidelines for scheduling.

The favorable propagation concept provides a way to quantify the
ability to separate UE channels at a BS with many antennas [245].
The channels h0

i and h0
k are said to provide asymptotically favorable

propagation if

(h0
i )Hh0

k√
E{‖h0

i ‖2}E{‖h0
k‖2}

→ 0 as M →∞. (1.34)

For fading channels, different types of convergence can be considered
in (1.34). Herein, we consider almost sure convergence, also known
as convergence with probability one, but the literature also contains
definitions that build on weaker types of convergence (e.g., convergence
in probability). The interpretation of (1.34) is that the channel directions
h0
i /
√
E{‖h0

i ‖2} and h0
k/
√
E{‖h0

k‖2} becomes asymptotically orthogonal.
The condition in (1.34) is satisfied for LoS channels as well as for NLoS
channels with uncorrelated Rayleigh fading [245]. One can show that
the superposition of LoS and NLoS components also satisfies (1.34).
Channel measurements with large BS arrays have also confirmed that
the UE channels decorrelate as more antennas are added [120, 150]; see
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Figure 1.14: Average UL SE as a function of the number of BS antennas M for
different channel models. The SNR is SNR0 = 0 dB and the strength of the inter-cell
interference is β̄ = −10 dB.

Section 7.3.4 on p. 495 for further details on channel measurements. Note
that (1.34) does not imply that channel responses become orthogonal,
in the sense that (h0

i )Hh0
k → 0. We later provide a general definition of

asymptotically favorable propagation in Section 2.5.2 on p. 233.
Figure 1.14 shows the average SE as a function of the number of

BS antennas when the SNR of the desired UE is fixed at SNR0 = 0 dB
and the strength of the inter-cell interference is β̄ = −10dB. The LoS
case considers a ULA with dH = 1/2 and the results are averaged
over different independent UE angles, all being uniformly distributed
from 0 to 2π. Despite the rather poor SNR and interference conditions,
Figure 1.14 shows that, by going from M = 1 to M = 10 antennas, one
can improve the SE from 0.8 bit/s/Hz to 3.3 bit/s/Hz. This is achieved
thanks to the array gain provided by MR combining. We notice that
the lower bound on the SE with NLoS propagation in Corollary 1.6 is
very tight for M > 10. The SE is a monotonically increasing function
of M and grows without limit as M → ∞, in contrast to the power-
scaling case analyzed in Section 1.3.2 where the SE saturated in the
high-SNR regime. This is once again due to MR combining, which
selectively collects more signal energy from the array, without collecting
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more interference energy. The difference between LoS and NLoS is
negligible in Figure 1.14 because the channel fading has a gradually
smaller impact on the mutual information between the transmitted and
received signal as more antennas are added [142]. This is attributed to
the spatial diversity from having multiple receive antennas that observe
independent fading realizations, which are unlikely to all be nearly zero
simultaneously. This phenomenon has been known for a long time; in
fact, the early works [257, 117] on multiantenna reception focused on
combating channel fading. The term channel hardening was used in
[142] to describe a fading channel that behaves almost deterministically
due to spatial diversity.

In the Massive MIMO literature [243], a channel h0
i is said to provide

asymptotic channel hardening if

‖h0
i ‖2

E{‖h0
i ‖2}

→ 1 (1.35)

almost surely as M →∞. The essence of this result is that the channel
variations reduce as more antennas are added, in the sense that the
normalized instantaneous channel gain converges to the deterministic
average channel gain. It is no surprise that deterministic LoS channels
provide channel hardening. More importantly, in NLoS propagation,

‖h0
i ‖2

E{‖h0
i ‖2}

= ‖h
0
i ‖2

Mβ0
i

→ 1 (1.36)

almost surely as M → ∞. This is an example of the strong law of
large numbers (see Lemma B.12 on p. 564) and can be interpreted as
the variations of ‖h0

i ‖2/M becoming increasingly concentrated around
its mean value E{‖h0

i ‖2}/M = β0
i as more antennas are added. This

does not mean that ‖h0
i ‖2 becomes deterministic; in fact, its standard

deviation grows as
√
M , while the standard deviation of ‖h0

i ‖2/M goes
asymptotically to zero as 1/

√
M . Asymptotic channel hardening can be

also proved for other channel distributions, as will be further discussed
in Section 2.5.1 on p. 231.

The channel hardening effect for the M -dimensional channel h ∼
NC(0M , IM ) is illustrated in Figure 1.15. The mean value of the normal-
ized instantaneous channel gain ‖h‖2/E{‖h‖2} and the 10% and 90%



192 Introduction and Motivation

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

Number of antennas (M)

 

 

Mean value
Percentiles
One realization

90%

10%N
or

m
al

iz
ed

 c
ha

nn
el

 g
ai

n

Figure 1.15: Illustration of the channel hardening phenomenon for an M -
dimensional channel h ∼ NC(0M , IM ). The normalized instantaneous channel gain
‖h‖2/E{‖h‖2} approaches its average value 1 and the standard deviations reduces
as 1/

√
M .

percentiles are shown for different numbers of antennas. One random
realization is also shown. As expected, we have ‖h‖2/E{‖h‖2} ≈ 1
when M is large. The convergence towards this limit is gradual, but the
approximation is reasonably tight for M ≥ 50.

In summary, increasing the number of BS antennas improves the SE,
which even grows without bound when M →∞. This is because the BS
can process its received signal over the array to selectively increase the
signal gain without collecting more interference. In contrast, increasing
the transmit power will increase both the signal and interference equally
much and give an upper SE limit. Nevertheless, the SE grows only
logarithmically with the number of antennas, as log2(M), which does
not provide sufficient scalability to achieve any order-of-magnitude
improvement in SE in future cellular networks.

Remark 1.3 (Physical limits of large arrays). The scaling behavior ob-
tained by the asymptotic analysis above has been validated experimen-
tally for practical antenna numbers [120, 150]. However, it is important
to note that the physics prevent us from letting the size of the array grow
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indefinitely as M →∞, since the propagation environment is enclosed
by a finite volume [281]. Ideally, we can cover the surface of this volume
with antennas, and neglect any absorption, to collect all signal energy,
but we can never collect more energy than was transmitted. This is not
an issue when we deal with hundreds or thousands of antennas since a
“large” channel gain of −60 dB in cellular communications implies that
we need one million antennas to collect all the transmitted energy. In
conclusion, the limit M →∞ is not physically achievable, but asymp-
totic analysis can still be suitable for investigating the system behavior
at practically large antenna numbers. Other channel distributions than
uncorrelated Rayleigh fading are, however, needed to get reliable results;
see Section 2.2 on p. 222 and Section 7.3 on p. 482 for further details.

1.3.3 Uplink Space-Division Multiple Access

Increasing the transmit power or using multiple BS antennas can only
bring modest improvements to the UL SE, as previously shown. This
is because these methods improve the SINR, which appears inside
the logarithm of the SE expression, thus the SE increases slowly. We
would like to identify a way that improves the SE at the outside of
the logarithm instead. Since the logarithmic expressions in Lemmas 1.4
and 1.5 describe the SE of the channel between a particular UE and
its serving BS, we can potentially serve multiple UEs, say K UEs,
simultaneously in each cell and achieve a sum SE that is the summation
of K SE expressions of the types in Lemmas 1.4 and 1.5. An obvious
bottleneck of such multiplexing of UEs is the co-user interference that
increases with K and now appears also within each cell. The intra-cell
interference can be much stronger than the inter-cell interference and
needs to be suppressed if a K-fold increase in SE is actually to be
achieved.

Space-division multiple access (SDMA) was conceived in the late1980s
and early 1990s [349, 308, 17, 280, 125, 373] to handle the co-user in-
terference in a cell by using multiple antennas at the BS to reject
interference by spatial processing. Multiple field-trials were carried out
in the 1990s, using (at least) up to ten antennas [15, 96, 16]. The
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information-theoretic capacity14 of these systems was characterized in
the early 2000s and described in [74, 129, 335, 342, 366, 127] for single-
cell systems, where the terminology “multiuser MIMO” was used. Note
that the K UEs are the multiple inputs and the M BS antennas are the
multiple outputs, thus the MIMO terminology is used irrespective of
how many antennas each UE is equipped with.15 Extensions of multiuser
MIMO to cellular networks have been developed and surveyed in papers
such as [276, 33, 294, 46, 126, 208], but the exact capacity is hard to
obtain in this case.

We will now analyze a cellular network with UL SDMA transmission
by assuming that there are K active UEs in each cell, as previously
illustrated in Figure 1.8. The channel response between the kth desired
UE in cell 0 and the serving BS is denoted by h0

0k ∈ CM for k = 1, . . . ,K,
while the channel responses from the interfering UEs in cell 1 to the
BS in cell 0 are denoted by h0

1i ∈ CM for i = 1, . . . ,K. Notice that the
subscript still indicates the identity of the UE, while the superscript is
the index of the receiving BS. The received multiantenna UL signal in
(1.22) is then generalized to

y0 =
K∑

k=1
h0

0ks0k

︸ ︷︷ ︸
Desired signals

+
K∑

k=1
h0

1ks1k

︸ ︷︷ ︸
Interfering signals

+ n0

︸︷︷︸
Noise

(1.37)

where sjk ∼ NC(0, p) is the signal transmitted by the kth UE in cell j
and the receiver noise n0 ∼ NC(0M , σ2IM ) is the same as before.

We consider the same LoS and NLoS propagation models as before.
More precisely, the LoS channel response for UE k in cell j is

h0
jk =

√
β0
j

[
1 e2πjdH sin(ϕ0

jk) . . . e2πjdH(M−1) sin(ϕ0
jk)
]T

(1.38)

14When there are K UEs in the network, the conventional one-dimensional
capacity notion generalizes to a K-dimensional capacity region that represents the
set of capacities that the K UEs can achieve simultaneously. The sum capacity
represents one point in this region and has gained particular traction since it is the
one-dimensional metric that describes the aggregate capacity of the network. This
and other operating points are further described in Section 7.1 on p. 452.

15The terminology “multiuser SIMO” was used in the 1990s for the case of SDMA
with single-antenna UEs [254], but nowadays the information-theoretic multiuser
MIMO terminology dominates and it is adopted in this monograph.
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where ϕ0
jk ∈ [0, 2π) is the azimuth angle relative to the boresight of

the BS array in cell 0. In the NLoS case, the corresponding channel
response between UE k in cell j and the BS in cell 0 is defined as

h0
jk ∼ NC

(
0M , β0

j IM
)

(1.39)

and assumed to be statistically independent between UEs. Recall that
we use the Wyner model in which, for simplicity, the average channel
gain β0

j is assumed to be the same for all UEs in cell j.
Since the BS in cell 0 receives a superposition of the signals trans-

mitted by its K desired UEs, it needs to process the received signal
in (1.37) to separate the UEs in the spatial domain—simply speak-
ing, by directing its hearing towards the location of each desired UE.
The separation of UEs is more demanding in SDMA than in con-
ventional time-frequency multiplexing of UEs, because it requires the
BS to have knowledge of the channel responses [127]. For example,
the BS in cell 0 can use knowledge of its kth UE’s channel response
to tailor a receive combining vector v0k ∈ CM to this UE channel.
This vector is multiplied with the received signal in (1.37) to obtain

vH
0ky0 = vH

0kh0
0ks0k

︸ ︷︷ ︸
Desired signal

+
K∑

i=1
i6=k

vH
0kh0

0is0i

︸ ︷︷ ︸
Intra-cell interference

+
K∑

i=1
vH

0kh0
1is1i

︸ ︷︷ ︸
Inter-cell interference

+ vH
0kn0

︸ ︷︷ ︸
Noise

.

(1.40)
The purpose of the receive combining is to make the desired signal much
stronger than the sum of interfering signals and noise. MR combined
with

v0k = h0
0k (1.41)

is a popular suboptimal choice since it maximizes the relative power
|vH

0kh0
0k|2/‖v0k‖2 of the desired signal, but it is not the optimal choice

when there are interfering signals [28, 348, 349]. The receive combining
design for multiuser MIMO is analytically similar to multiuser detection
in code-division multiple access (CDMA) [202, 205, 106] and the key
methods were developed at roughly the same time. In Section 4.1 on
p. 275, we will show that it is the multicell minimum mean-squared
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error (M-MMSE) combining vector

v0k = p

(
p
K∑

i=1
h0

0i(h0
0i)H + p

K∑

i=1
h0

1i(h0
1i)H + σ2IM

)−1

h0
0k (1.42)

that maximizes the UL SE in cellular networks. This combining scheme
has received its name from the fact that it also minimizes the mean-
squared error (MSE) E{|s0k − vH

0ky0|2} between the desired signal s0k
and the receive combined signal vH

0ky0, where the expectation is with
respect to the transmit signals (while the channels are considered de-
terministic). Interfering signals from all cells are taken into account in
M-MMSE combining and the matrix inverse in (1.42) has a role similar
to that of a whitening filter in classic signal processing [175]. M-MMSE
combining maximizes the SINR by finding the best balance between
amplifying the desired signal and suppressing interference in the spatial
domain. The price to pay is the increased computational complexity
from inverting a matrix and the need to learn the matrix that is inverted
in (1.42).

The next lemma provides closed-form SE expressions for the case of
MR combining. M-MMSE combining will be studied by simulations.

Lemma 1.7. If the BS in cell 0 knows the channel responses of all UEs
and applies MR combining to detect the signals from each of its K
desired UEs, then an achievable UL sum SE [bit/s/Hz/cell] in the LoS
case is

SELoS
0 =

K∑

k=1
log2




1 + M
K∑
i=1
i 6=k

g
(
ϕ0

0k, ϕ
0
0i
)

+ β̄
K∑
i=1

g
(
ϕ0

0k, ϕ
0
1i
)

+ 1
SNR0




(1.43)
with g(·, ·) being defined in (1.28).

With NLoS channels, an achievable UL sum SE [bit/s/Hz/cell] and
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a closed-form lower bound are

SENLoS
0 =

K∑

k=1
E





log2




1 + p‖h0
0k‖2

K∑
i=1
i 6=k

p
|(h0

0k)Hh0
0i|2

‖h0
0k‖2

+
K∑
i=1

p
|(h0

0k)Hh0
1i|2

‖h0
0k‖2

+ σ2








≥ K log2

(
1 + M − 1

(K − 1) +Kβ̄ + 1
SNR0

)
. (1.44)

Proof. The proof is available in Appendix C.1.6 on p. 587.

The sum SE expressions in Lemma 1.7 have similar forms as the
ones in Lemma 1.5 and Corollary 1.6, but are more complicated due
to the addition of intra-cell interference and the greater amount of
inter-cell interference. In the LoS case, SDMA results in the summation
of K SE expressions, one per desired UE. The desired signal gains
inside the logarithms increase linearly with M and thus every UE
experiences the full array gain when using MR combining. The drawback
of SDMA is seen from the denominator, where the interference terms
contain contributions from K − 1 intra-cell UEs and K inter-cell UEs.
Each interference term has the same form as in the single-user case in
Lemma 1.5, thus one can expect the interference to be the lowest when
the UEs have well-separated angles (to avoid the worst cases illustrated
in Figure 1.12). Recall from (1.30) that the function g(ϕ,ψ) decreases
as 1/M for any sin(ϕ) 6≈ sin(ψ). In conjunction with the array gain of
the desired signal, we can thus serve multiple UEs and still maintain
roughly the same SINR per UE if M is increased proportionally to

√
K

to counteract the increased interference.16
The NLoS case in Lemma 1.7 generalizes the lower bound in Corol-

lary 1.6 to K ≥ 1 and the bound is tight for M � 1. An exact
closed-form expression similar to (1.29) can also be obtained, but it
contains many summations and is omitted since it does not provide

16To obtain this scaling behavior, we notice that the desired signal power grows
as M and the interference power is proportional to K/M , due to the bound in (1.30).
The signal-to-interference ratio becomes M2/K and thus it is sufficient to scale M
proportionally to

√
K to achieve a constant signal-to-interference ratio as K grows.
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any additional insight. The gain from SDMA is easily seen from (1.44);
there is a factor K in front of the logarithm that shows that the sum
SE increases proportionally to the number of UEs. This multiplicative
factor is known as the multiplexing gain and achieving this gain is the
main point with SDMA. Inside the logarithm, the desired signal power
increases linearly with M , while the intra-cell interference power K − 1
and the inter-cell interference power K β̄ increase linearly with K. This
means that, as we add more UEs, we can counteract the increasing
interference by adding a proportional amount of additional BS antennas;
more precisely, we can maintain roughly the same SINR per UE by
increasing M jointly with K to keep the antenna-UE ratio M/K fixed.
Interestingly, this means that more antennas are needed to suppress
interference with MR combining in the NLoS case than in the LoS case,
where M only needs to increase as

√
K. The explanation is that all

interfering UEs cause substantial interference in the NLoS case, while
only the ones with sufficiently similar angles to the desired UE does that
in the LoS case (and the angular interval where this happens decreases
with M).

To exemplify these behaviors, Figure 1.16 shows the average sum SE
as a function of the number of UEs per cell, for either M = 10 or M =
100 antennas. The sum SE with MR combining is shown in Figure 1.16a
based on the analytic formulas from Lemma 1.7, while Monte-Carlo
simulations are used for M-MMSE combining in Figure 1.16b. In both
cases, the SNR is fixed at SNR0 = 0 dB and the strength of the inter-cell
interference is β̄ = −10dB. The antenna spacing is dH = 1/2 in the
LoS case and the results are averaged over different independent UE
angles, all being uniformly distributed from 0 to 2π.

Figure 1.16 shows that the sum SE is a slowly increasing function
of K in the case of M = 10, because the BS does not have enough
spatial degrees of freedom to separate the UEs—neither by MR nor
by M-MMSE combining. The behavior is completely different when
M = 100 antennas are used since the channel response of each UE is
then a 100-dimensional vector but there are only up to 20 UEs per cell
so the UE channels only span a small portion of the spatial dimensions
that the BS can resolve. Consequently, the sum SE increases almost
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(b) M-MMSE combining.

Figure 1.16: Average UL sum SE as a function of the number of UEs per cell
for different combining schemes, different channel models, and either M = 10 or
M = 100 BS antennas. The SNR is SNR0 = 0dB and the strength of the inter-cell
interference is β̄ = −10dB. The sum SE grows linearly with K as long as M/K
remains large. M-MMSE rejects interference more efficiently than MR.
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linearly with the number of UEs and we can achieve a roughly K-fold
improvement in sum SE over a single-user scenario. For example, we
achieve an SE of 3.3 bit/s/Hz/cell with (M,K) = (10, 1) using MR/M-
MMSE combining and can increase it to 71.6 bit/s/Hz/cell with MR
and 101 bit/s/Hz/cell with M-MMSE for (M,K) = (100, 20). This
corresponds to 21× and 31× gains in SE, respectively. These numbers
were selected from the LoS curves, because the NLoS case shows some
interesting behaviors that deserve further discussion. The sum SE is
considerably lower with NLoS than with LoS when using MR combining,
while we get the opposite result when using M-MMSE combining. The
reason for this is that each UE is affected by interference from many
UEs in the NLoS case, while only a few UEs with similar angles cause
strong interference in the LoS case. If the interference is ignored, as
with MR combining, the SE is lower in the NLoS case due to the larger
sum interference power. However, it is easier for M-MMSE combining
to reject interference in NLoS than in LoS, where there might be a few
UEs with channels that are nearly parallel to the desired UE’s channel.
That is why the SE is higher in the NLoS when using M-MMSE.

We now consider cases wherein M is increased proportionally to
K, to suppress the inter-user interference that increases with K. The
proportionality constant M/K is called antenna-UE ratio. Figure 1.17
shows the sum SE obtained by M-MMSE combining, as a function of
K for different antenna-UE ratios: M/K ∈ {1, 2, 4, 8}. The SE grows
almost linearly with K in all four cases, as expected from Lemma
1.7. The steepness of the curves increases as M/K increases, since it
becomes easier to suppress the interference when M � K. Looking at
the NLoS case withK = 10, the first doubling of the number of antennas
(from M/K = 1 to M/K = 2) gives a 94% gain in SE, while the second
doubling gives another 51% gain and the third doubling gives yet another
29% gain. Since the relative improvements are decaying, we say that
M/K ≥ 4 is the preferred operating regime for multiuser MIMO.17 The
LoS and NLoS cases once again provide comparable results.

17We will revisit this statement in Section 7.2.2 on p. 474, where scheduling is
discussed. By taking the channel estimation overhead into account, we will show
that for a given M there is a particular K that maximizes the sum SE.
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Figure 1.17: Average UL sum SE with M-MMSE combining as a function of the
number of UEs per cell, when the number of antennas increases with K with different
fixed antenna-UE ratios M/K. The SNR is SNR0 = 0dB and the strength of the
inter-cell interference is β̄ = −10 dB. The sum SE grows as M/K increases.

M-MMSE is the linear receive combining scheme that maximizes
the SE. The basic characteristic of linear schemes is that they treat
interference as spatially colored noise. From a channel capacity per-
spective, this is only optimal when the interference between each pair
of UEs is sufficiently small [230, 296, 20, 21, 295]. The information
theory for interference channels proves that strong interference sources
should be canceled using non-linear receiver processing schemes, such
as successive interference cancelation, before the desired signals are
decoded [314]. However, such schemes are rather impractical, since
one needs to store large blocks of received signals and then decode
the UEs’ data sequentially, leading to high complexity, large memory
requirements, and latency issues. If we would limit ourselves to linear
receiver processing schemes, how large is the performance loss?

Figure 1.18 quantifies the performance loss of linear receiver pro-
cessing as compared to non-linear receiver processing, as a function of
the number of UEs. The figure shows the ratio between the average UL
sum SE achieved by M-MMSE combining and by successive interfer-



202 Introduction and Motivation

0 5 10 15 20
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of UEs (K)

Fr
ac

tio
n 

of
 n

on
-li

ne
ar

 p
er

fo
rm

an
ce

 

 

M/K= 8
M/K= 4
M/K= 2
M/K= 1

Figure 1.18: Ratio between the average UL sum SE achieved with M-MMSE
combining and with non-linear receiver processing, as a function of the number
of UEs per cell. The number of antennas M increases with K for different fixed
antenna-UE ratios: M/K ∈ {1, 2, 4, 8}. The SNR is SNR0 = 0 dB and the strength
of the inter-cell interference is β̄ = −10 dB.

ence cancelation, where the intra-cell signals are decoded sequentially
while treating inter-cell interference as noise [314]. The setup is the
same as in the previous figure, but we only consider NLoS propaga-
tion for simplicity. The non-linear scheme performs much better for
M/K = 1, in which case M-MMSE only achieves 70%–80% of its sum
SE. The performance difference reduces quickly as M/K increases. For
M/K = 4 and M/K = 8, we only lose a few percentages in sum SE
by using M-MMSE instead of the non-linear scheme, even if there is as
much as 20 UEs. The interpretation is that the favorable propagation,
achieved by having many BS antennas, makes the interference between
each pair of UEs sufficiently small to make linear receiver processing
nearly optimal. When there are many active UEs, the total interference
caused to a UE can indeed be large, but nevertheless, linear processing
performs well since the interference between each pair of UEs is small.
Similar observations have been made in the overview articles [50, 209,
210].
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In summary, UL SDMA transmission can increase the sum SE per
cell by more than one order-of-magnitude. This is achieved by serving
K UEs simultaneously and increasing the number of BS antennas to
achieve an array gain that counteracts the increased interference. This
leads to an operating regime with antenna-UE ratio M/K ≥ c, for
some preferably large value c, where we can provide K-fold gains in
sum SE. This is the type of highly scalable SE improvements that are
needed to handle much higher data volumes in the coverage tier of
future cellular networks. Note that the SE per UE is not dramatically
changed, thus the use of more spectrum is still key to improving the
throughput per UE. The sum SE gains are achievable with both LoS
and NLoS channels, using either MR combining that maximizes the
array gain or M-MMSE combining that also suppresses interference to
maximize the SE. Non-linear processing schemes can only bring minor
performance improvements in the preferable operating regime and are
therefore not considered in the remainder of this monograph.

Remark 1.4 (Multiantenna UEs). We have shown above that SDMA
transmission with many single-antenna UEs and an even larger number
of BS antennas achieves high sum SE. What would happen if the
UEs were also equipped with multiple antennas? The cost, size, and
complexity of each UE will certainly increase. The positive effect is that
a UE with NUE antennas can transmit up to NUE simultaneous data
streams to its serving BS. From the BS’s perspective, each stream can
be treated as a signal from a separate “virtual” UE and the signal can
only be distinguished if it has a different spatial directivity than the
other signals. This means that the vector that describes the channel
response from the BS to the nth antenna of a particular UE should
be nearly orthogonal to the other antennas’ channel responses (for
n = 1, . . . , NUE). In NLoS propagation, this is achieved when the
UE antennas observe nearly uncorrelated random channel realizations,
which is possible in a rich scattering environment with an adequate
antenna spacing. Channel orthogonality is much harder to achieve in LoS
propagation since the angle between the BS and a UE in the far-field is
roughly the same for all the antennas at the UE; recall from (1.28) that
the inner product g(ϕ,ψ) between LoS channel responses with angles ϕ
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and ψ is large whenever ϕ ≈ ψ. Hence, the benefit of sending multiple
data signals cannot be exploited in propagation environments with only
a dominating LoS path. The UE can, however, achieve an additional
array gain proportional to NUE by coherently combining the signals
over NUE antennas, if it knows the channel responses. This monograph
focuses on single-antenna UEs, but the results can be readily applied to
NUE-antenna UEs by viewing them as NUE virtual UEs that transmit
NUE separate signals, representing different data streams. The paper
[194] considers multiantenna UEs and shows that the SE is maximized
when a particular number of data streams are received/transmitted per
cell (see Section 7.2.2 on p. 474 for a further discussion). Suppose this
number of streams is K?

stream and that each UE is allocated as many
streams as it has antennas. The analysis in [194] indicates that roughly
the same sum SE is achieved when having K UEs that are equipped
with NUE antennas and when having NUEK single-antenna UEs. Hence,
the distinct advantage of having multiple UE antennas occurs at low
user load, K < K?

stream, where the only way to send all K?
stream streams

is to allocate multiple streams per UE.

1.3.4 Downlink Space-Division Multiple Access

This section has so far focused on the UL, where we have identified
SDMA as a suitable way to improve the SE by an order-of-magnitude
or more. We will now describe how SDMA is applied in the DL. We
continue to use the Wyner model, which is illustrated in Figure 1.19
for the DL. The main difference from the UL in Figure 1.8 is that the
signals are transmitted from BSs instead of from UEs. There are K
active UEs in each cell and the serving BS sends a separate signal to each
of them using linear transmit precoding from an array of M antennas.
Precoding means that each data signal is sent from all antennas, but
with different amplitude and phase to direct the signal spatially. This
is also called beamforming, but we refrain from using this terminology
since it can give the misleading impression that a signal beam is always
formed in a particular angular direction and that analog phase-shifters
are used. In contrast, precoding means that each antenna’s transmit
signal is generated separately in the digital baseband, which gives full
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Figure 1.19: Illustration of the notion of desired and interfering DL signals in a
two-cell network. In the Wyner model, every UE in cell 0 has the same value of the
average channel gains β0

0 and β0
1 , while every UE in cell 1 has the same value of β1

0
and β1

1 .

flexibility in the signal generation.18 Angular beams are a special case
of precoding that is useful in LoS propagation, but for NLoS channels
the transmitted signal might not have a distinct angular directivity, but
can still be precoded such that the multipath components are received
coherently at the UE.

Similar to the UL, the DL channel response between the BS in
cell 0 and its kth desired UE is denoted by (h0

0k)H for k = 1, . . . ,K.
The DL channel response between the BS in cell 1 and the kth UE
in cell 0 is denoted by (h1

0k)H. The transpose represents the fact that
we are now looking at the channel from the opposite direction, while
the complex conjugate is added for notational convenience. There is no
such conjugation in practice, but it simplifies the notation and does not
change the SE.

The received DL signal z0k ∈ C at UE k in cell 0 is modeled as

z0k = (h0
0k)Hw0kς0k

︸ ︷︷ ︸
Desired signal

+
K∑

i=1
i 6=k

(h0
0k)Hw0iς0i

︸ ︷︷ ︸
Intra-cell interference

+
K∑

i=1
(h1

0k)Hw1iς1i

︸ ︷︷ ︸
Inter-cell interference

+ n0k

︸︷︷︸
Noise

(1.45)

where ςjk ∼ NC(0, p) is the signal transmitted to the kth UE in cell j
18An animation of precoding is found at https://youtu.be/XBb481RNqGw.

https://youtu.be/XBb481RNqGw
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and wjk ∈ CM is the corresponding unit-norm precoding vector (i.e.,
‖wjk‖ = 1) that determines the spatial directivity of the signal. The
receiver noise at this UE is denoted by n0k ∼ NC(0, σ2).

We consider the same LoS and NLoS propagation models as before.
In the LoS case, we have the multiple-input single-output (MISO)
channel response

hljk =
√
βlj

[
1 e2πjdH sin(ϕljk) . . . e2πjdH(M−1) sin(ϕljk)

]T

(1.46)

between UE k in cell j and the BS in cell l, where ϕljk ∈ [0, 2π) is the
azimuth angle relative to the boresight of the transmitting BS array. In
the NLoS case, the corresponding channel response is

hljk ∼ NC
(
0M , βljIM

)
(1.47)

and is assumed to be independent between UEs. Recall from (1.12)
that we use the same notation, β̄ = β1

0/β
0
0 , for the relative strength of

inter-cell interference in the DL as in the UL.
The precoding vectors wjk, for k = 1, . . . ,K and j = 0, 1, can be

selected in a variety of ways. As seen from the received signal in (1.45),
each UE is affected by all the precoding vectors; the own precoding
vector is multiplied with the channel response from the serving BS,
while the other ones cause interference and are multiplied with the
channel response from the corresponding transmitting BSs. Hence, the
precoding vectors should be selected carefully in the DL, based on
knowledge of the channel responses. We will study this in detail in
Section 4.3 on p. 316, but for now we consider MR precoding with

wjk =
hjjk
‖hjjk‖

. (1.48)

This precoding vector focuses the DL signal at the desired UE to achieve
the maximum array gain, similar to MR combining in the UL. Note
that ‖wjk‖2 = 1, which implies that the total transmit power of the
BS is constant, irrespective of the number of antennas. Consequently,
the transmit power per BS antenna decreases roughly as 1/M . The
following lemma provides SE expressions for MR precoding.
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Lemma 1.8. If the BSs use MR precoding and the UEs in cell 0 know
their respective effective channels (h0

0k)Hw0k and the interference vari-
ance, then an achievable DL sum SE [bit/s/Hz/cell] in the LoS case is

SELoS
0 =

K∑

k=1
log2




1 + M
K∑
i=1
i 6=k

g(ϕ0
0i, ϕ

0
0k) + β̄

K∑
i=1

g(ϕ1
1i, ϕ

1
0k) + 1

SNR0



.

(1.49)
With NLoS channels, a DL sum SE [bit/s/Hz/cell] and a closed-form

lower bound are

SENLoS
0 =

K∑

k=1
E





log2




1 + p‖h0
0k‖2

K∑
i=1
i 6=k

p
|(h0

0k)Hh0
0i|2

‖h0
0i‖2

+
K∑
i=1

p
|(h1

0k)Hh1
1i|2

‖h1
1i‖2

+ σ2








≥ K log2

(
1 + (M − 1)

(K − 1)M−1
M +Kβ̄ + 1

SNR0

)
. (1.50)

Proof. The proof is available in Appendix C.1.7 on p. 588.

The DL sum SE in this lemma is very similar to the UL sum SE in
Lemma 1.7. The NLoS case only differs in the extra multiplicative term
M−1
M in the denominator of (1.50), which is almost one for large M .

The LoS case only differs in the angles that appear in each expression;
all angles in the UL are from UEs to the BS in cell 0, while the DL
includes both the angles from the desired UE to all transmitting BSs
and the angles from the other UEs that these BSs are transmitting to
(representing the directivity of each DL signal). Some of the similarities
are induced by the Wyner model since we have assumed that the inter-
cell interference is equally strong in the UL and DL (i.e., β1

0 = β0
1); in

general, there are also differences in the average channel gains, as we
elaborate on in Section 4.3.2 on p. 320. Nonetheless, when using the
Wyner model, the UL simulations in Figures 1.16–1.17 are representative
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for the DL performance as well—no additional simulations are needed
to uncover the basic behaviors.

The array gain is M with MR processing in both UL and DL, but
it is obtained differently. In the UL, the BS makes M observations of
the desired signal over its M receive antennas, each being corrupted
by an independent noise term. By coherently combining the M signal
components, the signal power grows proportionally toM while the noise
realizations add incoherently so that the noise variance is unchanged. In
the DL, theM transmit antennas have different channels to the receiving
UE. Since the total transmit power is fixed, the signal power per antenna
is reduced as 1/M and the signal amplitude as 1/

√
M . With precoding

that makes the M transmitted signal components add coherently at the
UE, the received signal’s amplitude grows as M/

√
M =

√
M and the

received signal power therefore grows as M .

1.3.5 Acquiring Channel State Information

The channel responses, hjjk, are utilized by BS j to process the UL and
DL signals. We have assumed so far that the channel responses are known
perfectly, but in practice, these vectors need to be estimated regularly.
More precisely, the channel responses are typically only constant for
a few milliseconds and over a bandwidth of a few hundred kHz. A
random distribution is commonly used to model the channel variations.
The current set of channel response realizations is called the channel
state and the knowledge that the BSs have of them is referred to as
the channel state information (CSI). Full statistical CSI regarding the
distributions19 of random variables is assumed to be available anywhere
in the network, while instantaneous CSI regarding the current channel
realizations need to be acquired at the same pace as the channels
change. The main method for CSI acquisition is pilot signaling, where
a predefined pilot signal is transmitted from an antenna. As illustrated
in Figure 1.20, any other antenna in the network can simultaneously
receive the transmission and compare it with the known pilot signal to

19It is in many cases sufficient to know the first- and second-order moments of
the random variables, but for simplicity we assume that the full distributions are
available.
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One pilot signal

Multiple receive antennas

Figure 1.20: When an antenna is transmitting a pilot signal, any number of receive
antennas can simultaneously receive the pilot signal and use it to estimate their
respective channels to the transmitter.

estimate the channel from the transmitting antenna. If we instead need
to estimate the channel response from two transmitting antennas, two
orthogonal pilot signals are generally required to separate the signals
from the two antennas [182, 195, 38]. The orthogonality is achieved
by spending two samples on the transmission, as further explained
in Section 3.1 on p. 244. The number of orthogonal pilot signals is
proportional to the number of transmit antennas, while any number of
receive antennas can “listen” to the pilots simultaneously and estimate
their individual channels to the transmitters.

Every pilot signal that is transmitted could have been a signal that
carried payload data, thus we want to minimize this overhead caused by
pilot signaling. In SDMA, there are key differences between UL and DL
in terms of the overhead for channel acquisition. There are K single-
antenna UEs per cell and thus K pilot signals are required to estimate
the channels in the UL. Similarly, there are M antennas at the BS and
thus M pilot signals are required to estimate the channels in the DL.
Since having an antenna-UE ratio M/K ≥ 4 is the preferable operating
regime in SDMA, the overhead from sending DL pilots is typically much
larger than that from UL pilots. A BS antenna is only useful if we know
the channel response, which limits the number of BS antennas that we
can utilize in practice, unless we can find a workaround.

The UL and DL can be separated in either time or frequency; see
Figure 1.21. If the UL and DL are separated in time, using a time-division
duplex (TDD) protocol, then the channel responses are reciprocal20 [254].

20The physical propagation channels are reciprocal, but the transceiver chains are
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Figure 1.21: Illustration of two ways to divide a block of time/frequency resources
between UL and DL. Each solid box represents a time-frequency block where the
channel responses are constant and need to be estimated.

This means that the channel response is the same in both directions and
can be estimated at the BS using only K UL pilots. Only the BS in cell j
needs to know the complete channel response hjjk to its kth UE, while
the corresponding UE only needs to know the effective scalar channel
gjk = (hjjk)Hwjk that is obtained after precoding. Since the value of gjk
is constant as long as the channels are constant, it can be estimated
blindly from the DL payload data signals, irrespective of the channel
distribution [243].21 For example, the BS can use its CSI to adjust the
phase of wjk so that the phase of gjk becomes (nearly) deterministic,
thereby mainly the magnitude |gjk| needs to be estimated. Channel
hardening improves the estimation quality since the relative variations
in |gjk|/E{|gjk|} becomes smaller. Consequently, a TDD protocol only
requires K pilots, independently of the number of antennas, M .

If the UL and DL are instead separated in frequency, using a
frequency-division duplex (FDD) protocol, then the UL and DL chan-
nels are always different and we cannot rely on reciprocity. Hence, we
need to send pilots in both UL and DL. In addition, the estimates of
the DL channel responses need to be fed back to the BS, to enable
DL precoding computation. The feedback overhead is approximately

generally not fully reciprocal. This is further discussed in Section 6.4.4 on p. 445.
21DL pilot signals can be utilized to improve the estimation quality, but this does

not necessarily improve the SE since the overhead for channel estimation increases
[243].
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Figure 1.22: Illustration of the operating points (M,K) that are supported by using
τp = 20 pilots, for TDD and FDD protocols. The shaded area corresponds to the
preferable operating points for SDMA systems. The TDD protocol is scalable with
respect to the number of antennas and the number of UEs that can be supported is
only limited by τp.

the same as that of sending max(M,K) additional UL pilot signals.22
The precoded channels gjk = (hjjk)Hwjk can be estimated from the DL
signals, as described for TDD above. Hence, an FDD protocol has a
pilot/feedback overhead that is equivalent to sending M +K pilots in
the UL and M pilots in the DL. To compare this with TDD, suppose
the frequency resources in FDD are divided equally between UL and DL.
The average pilot overhead of the FDD protocol is then M+K+max(M,K)

2 .
We will now illustrate the important difference in pilot dimensionality

between TDD and FDD operation. Consider an SDMA system that
can afford τp pilots. This value determines the combinations of M and
K that can be supported. The TDD protocol supports up to K = τp
UEs and an arbitrary M . The FDD protocol supports any M and K
such that M+K+max(M,K)

2 ≤ τp. The operating points supported by
these protocols are illustrated in Figure 1.22 for τp = 20. The shaded
area indicates M ≥ 4K, which are the operating points attractive for

22This approximation assumes analog CSI feedback, where UE k sends the value
of each element in hjjk as a real-valued data symbol and this feedback is multiplexed
using SDMA. More precisely, with the multiplexing gain min(M,K) of SDMA, we
need max(M,K) symbol transmissions to feed back the MK channel coefficients.
Quantized digital feedback is another option, but it gives roughly the same overhead
if the feedback accuracy should be the same [73].
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SDMA as discussed in Section 1.3.3 (see for example the results in
Figure 1.17). The tradeoff between antennas and UEs caused by the
FDD protocol leads to a very limited intersection with the shaded area.
In contrast, the TDD protocol is entirely scalable with respect to M
and the number of pilots only limits how many UEs can be supported.
Any number of antennas can be used, but preferably we select one of
the many operating points that lie in the shaded area.

In summary, SDMA systems should ideally be combined with TDD,
by exploiting the reciprocity between UL and DL channels. This is
because the required channel acquisition overhead in TDD is K, while
it is M+K+max(M,K)

2 in FDD. The FDD overhead is around 50% larger
whenM ≈ K, while it is much larger forM � K, which is the preferable
operating regime for SDMA. Note that it is the channel acquisition
needed for DL precoding that differs between TDD and FDD, while the
UL works essentially the same.

Remark 1.5 (Channel parameterizations). In some propagation scenarios,
the set of possible M -dimensional channel responses can be parame-
terized using much less than M parameters. A key example is LoS
propagation where the model that we used in (1.38) mainly depends
on the angle ϕ0

jk between the BS and the UE. Instead of transmitting
M DL pilots, we can in the LoS case select a set of equally spaced
angles between 0 and π and send precoded DL pilot signals only in
these directions. If the number of such angles is much smaller than
M , then this method can enable FDD operation with reduced pilot
overhead and can still give good estimation quality [50]. However, LoS
channel parameterizations require the array geometry to be predefined
and that the antennas are phase-calibrated, in the sense that the phase
drifts incurred by the radio frequency (RF) hardware are known and
can be compensated for. In particular, the model in (1.38) is only valid
for phase-calibrated ULAs. There are several drawbacks with building
a system that strictly relies on channel parameterizations. One is that
even if some UE channels can be parameterized efficiently, there might
not exist a single low-dimensional parameterization model that applies
to all channels—it is sufficient that one part of the cell provides approx-
imately uncorrelated Rayleigh fading to discourage the use of channel
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parametrization for simplified DL estimation. Another drawback is that
practical channels are not bound to follow a particular channel model.
NLoS channels can consist of various multipath components that arrive
from different angles and with different phase-rotations, while practical
LoS channels contain random reflections and scattering, in addition
to the deterministic LoS path. TDD operation is generally preferred
because we want to design a network that can operate efficiently in any
kind of propagation environment, with any array geometry, and without
inter-antenna phase-calibration. However, TDD also has its own specific
challenges: i) the SNR is slightly lower than in FDD since the power
amplifier is only turned on part of the time; ii) the transmitter and
receiver hardware of an antenna must be calibrated to maintain channel
reciprocity (see Section 6.4.4 on p. 445 for a further discussion).
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1.4 Summary of Key Points in Section 1

• Users of future networks will demand wireless connectivity
with uniform service quality, anywhere at any time.

• The demand for data traffic increases rapidly and calls for
higher area throughput in future cellular networks. This can
be achieved by cell densification, allocating more frequency
spectrum, and/or improving the SE [bit/s/Hz/cell].

• Current and future network infrastructure consists of two
key parts: the coverage tier and the hotspot tier. The area
throughput needs to be improved in both tiers.

• The coverage tier takes care of coverage, mobility, and guaran-
tees a minimum service quality. To increase the area through-
put of this tier, it is preferred to increase the SE, since densi-
fication or the use of spectrum at higher frequencies degrade
the mobility support and coverage.

• The hotspot tier offloads traffic from the coverage tier, for
example, from low-mobility indoor UEs. Densification and
the use of new spectrum at higher frequencies are attractive
ways to increase the area throughput of this tier, but the SE
can be also improved by an array gain.

• The SE of a single UE is a slowly increasing, logarithmic
function of the SINR. Only modest SE gains are possible by
increasing the SINR (e.g., by using higher transmit power
or deploying multiple antennas at the BS).

• A K-fold SE gain is achievable by serving K UEs per cell,
on the same time/frequency resources, using SDMA. The
number of BS antennas is preferably increased with K to get
an array gain that compensates for the increased interference.
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• Each BS should have more antennas, M , than UEs, leading
to an antenna-UE ratio M/K > 1. This makes linear UL
receive combining and DL transmit precoding nearly optimal
since each interfering UE contributes with relatively little
interference.

• When the number of BS antennas is large, the effective
channels to the desired UEs are almost deterministic after
combining/precoding, although the channel responses are
random. This phenomenon is called channel hardening.

• CSI is used by the BS to spatially separate the UEs in UL
and DL. The channels are most efficiently estimated with
a TDD protocol that utilizes channel reciprocity, since only
UL pilot signals are required and no feedback is needed.



2
Massive MIMO Networks

This section defines many of the basic concepts related to Massive MIMO,
which will be used in later sections. A formal definition of Massive
MIMO networks is provided in Section 2.1, along with a description of
the considered coherence block structure. Spatial channel correlation
is introduced and the correlated Rayleigh fading channel model is
defined in Section 2.2. The UL and DL system models that will be
used in the remainder of this monograph are provided in Section 2.3.
In Section 2.4, we exemplify how spatial channel correlation can affect
the system performance. The properties of channel hardening and
favorable propagation are then defined in Section 2.5 and analyzed for
spatially correlated channels. Section 2.6 introduces the local scattering
channel model, which will be used in later sections to provide qualitative
insights into the impact of spatial channel correlation. The key points
are summarized in Section 2.7.

2.1 Definition of Massive MIMO

Based on the discussion in Section 1, a highly spectrally efficient coverage
tier in a cellular network can be characterized as follows:

216
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• It uses SDMA to achieve a multiplexing gain by serving multiple
UEs on the same time-frequency resources.

• It has more BS antennas than UEs per cell to achieve efficient
interference suppression. If the anticipated number of UEs grows in
a cell, the BS should be upgraded so that the number of antennas
increases proportionally.

• It operates in TDD mode to limit the CSI acquisition overhead,
due to the multiple antennas, and to not rely on parametrizable
channel models.

The Massive MIMO technology from [208, 212] embraces these
design guidelines, making it an efficient way to achieve high SE in the
coverage tier of future wireless networks. It is hard to find a concise
definition of Massive MIMO in prior literature, but the following is the
definition considered in this monograph.

Definition 2.1 (Canonical Massive MIMO network). A Massive MIMO
network is a multicarrier cellular network with L cells that operate
according to a synchronous TDD protocol.1 BS j is equipped withMj �
1 antennas, to achieve channel hardening. BS j communicates with Kj

single-antenna UEs simultaneously on each time/frequency sample,
with antenna-UE ratio Mj/Kj > 1. Each BS operates individually and
processes its signals using linear receive combining and linear transmit
precoding.

We consider this as the canonical form of Massive MIMO because it
has the characteristics listed above and is in line with Marzetta’s seminal
work. It also represents the technology that has been demonstrated in
real-time Massive MIMO testbeds [329, 139]. However, there are impor-
tant research efforts that deviate from the canonical form (or attempt to
broaden it). In particular, finding an efficient FDD protocol for Massive

1A synchronous TDD protocol refers to a protocol in which UL and DL transmis-
sions within different cells are synchronized. As discussed in [208], this constitutes a
worst-case scenario from the standpoint of inter-cell interference. In Section 4.2.4 on
p. 315, we briefly discuss the potential impact of asynchronous pilot transmission.
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MIMO is highly desirable, since there are vast amounts of spectrum re-
served for FDD operation. In mobile scenarios, the estimation/feedback
overhead of FDD operation is prohibitive, unless something is done to
reduce it. The predominant approach is to parameterize the channel
(as discussed in Remark 1.5 on p. 212) and utilize the parametrization
to reduce the channel estimation and feedback overhead. This principle
was analyzed for small-scale MIMO in the 1990s [125, 254], while some
early results for FDD Massive MIMO can be found in [7, 84, 273, 77].
These works are based on the hypothesis that the channels can be
parameterized in a particular way, which is then utilized to achieve a
more efficient estimation and feedback procedure. However, this line of
research is still in its infancy since the underlying hypothesis has not
been proved experimentally. This is why FDD operation is not consid-
ered in this monograph, but we stress that designing and demonstrating
an efficient FDD Massive MIMO implementation is a great challenge
that needs to be tackled [50].

Two other deviations from the canonical form of Massive MIMO are
the use of multiantenna UEs [32, 194, 31] and single-carrier transmission
[264]. The former was discussed in Remark 1.4 on p. 203, while the
multicarrier assumption in Definition 2.1 deserves further explanation.

The propagation channels change over time and frequency. The
bandwidth B equals the number of complex-valued samples that describe
the signal per second. The time interval between two samples thus
decreases as the bandwidth increases. Wireless channels are dispersive,
meaning that the signal energy that is transmitted over a given time
interval spreads out and is received over a longer time interval. If the
sample interval is short, as compared to the dispersiveness of the channel,
there will be a substantial overlap between adjacent transmitted samples
at the receiver. The channel then has memory, which makes it harder
to estimate it and to process the transmitted and received signal to
combat inter-sample interference. A classic solution is to divide the
bandwidth into many subcarriers, each having a sufficiently narrow
bandwidth so that the effective time interval between samples is much
longer than the channel dispersion. The subcarrier channels are then
essentially memoryless and we can apply the information-theoretic
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results described in Section 1.2 on p. 167 on each subcarrier. There are
different multicarrier modulation schemes, whereof both conventional
OFDM [357] and filter bank multi-carrier (FBMC) modulation [111]
have been analyzed in the context of Massive MIMO.

The important thing from the Massive MIMO perspective is not
which multicarrier modulation scheme is used, but that the frequency re-
sources are divided into flat-fading subcarriers. The coherence bandwidth
Bc describes the frequency interval over which the channel responses are
approximately constant. One or multiple subcarriers fit(s) into the coher-
ence bandwidth, thus the channel observed on adjacent subcarriers are ei-
ther approximately equal or closely related through a deterministic trans-
formation. Hence, there is generally no need to estimate the channel on
every subcarrier. Similarly, the time variations of the channels are small
between adjacent samples and the coherence time Tc describes the time
interval over which the channel responses are approximately constant.

Definition 2.2 (Coherence block). A coherence block consists of a number
of subcarriers and time samples over which the channel response can be
approximated as constant and flat-fading. If the coherence bandwidth
is Bc and the coherence time is Tc, then each coherence block contains
τc = BcTc complex-valued samples.

The number of practically useful samples per coherence block can
be smaller than BcTc. For example, if the cyclic prefix in an OFDM
implementation adds 5% to the OFDM symbol time, then the number
of useful samples is BcTc/1.05.

The concepts of multicarrier modulation and coherence block are
illustrated in Figure 2.1. The random channel responses in one coherence
block are statistically identical to the ones in any other coherence block,
irrespective of whether they are separated in time and/or frequency.
Hence, the channel fading is described by a stationary ergodic random
process. The performance analysis is therefore carried out by studying
a single statistically representative coherence block. We assume that
the channel realizations are independent between any pair of blocks,
which is known as a block fading assumption.2

2The independence assumption is not strictly necessary, since we consider ergodic
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Figure 2.1: The TDD multicarrier modulation scheme of a canonical Massive MIMO
network. The time-frequency plane is divided into coherence blocks in which each
channel is time-invariant and frequency-flat.

Bc

Coherence time Tc

Coherence
bandwidth

τp

τu τd
UL data DL data

UL pilots:
(a) The samples are used for UL pilots, UL data, and
DL data.

SubcarriersOne sample
Bc

Coherence time Tc

Coherence
bandwidth

(b) The samples can belong to different subcarriers.

Figure 2.2: Each coherence block contains τc = BcTc complex-valued samples.

Each coherence block is operated in TDD mode and Figure 2.2
illustrates how the τc samples are located in the time and frequency
plane. The samples are used for three different things:

• τp UL pilot signals;

SEs where all possible channel realizations are observed during the communication.
Hence, there can be some correlation between the channel realizations in different
blocks, but the key assumption is that this correlation is not utilized. The processing
in the transmitter and receiver is carried out using only long-term statistics and
measurements made in the current block.
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• τu UL data signals;

• τd DL data signals.

Clearly, we need τp + τu + τd = τc. The fraction of UL and DL data
can be selected based on the network traffic characteristics, while the
number of pilots per coherence block is a design parameter. Many user
applications (e.g., video streaming and web browsing) mainly generate
DL traffic, which can be dealt with by selecting τd > τu.

The size of a coherence block is determined by the propagation envi-
ronment, UE mobility, and carrier frequency. Each UE has an individual
coherence bandwidth and coherence time, but it is hard to dynamically
adapt the network to these values since the same protocol should apply
to all UEs. A practical solution is to dimension the coherence block for
the worst-case propagation scenario that the network should support.
If a UE has a much larger coherence time/bandwidth, then it does not
have to send pilots in every block.3

Remark 2.1 (Rule-of-thumb for channel coherence). It is hard to give
a precise dimensionality of the coherence block since it depends on
many physical factors, but there is a common rule-of-thumb [314]. The
coherence time is the time interval over which the phase and amplitude
variations in the channel due to UE mobility are negligible. This can
be approximated as the time it takes to move a substantial fraction
of the wavelength λ, say, a quarter of the wavelength: Tc = λ/(4υ)
where υ is the velocity of the UE. Hence, the coherence time is inversely
proportional to the carrier frequency and the channels need to be
estimated less frequently in the conventional cellular frequency range of
1–6GHz as compared to the mmWave frequency range of 30–300GHz.4
The coherence bandwidth is determined by phase differences in the
multipath propagation. It can be approximated as Bc = 1/(2Td) where
Td is the delay spread (i.e., the time difference between the shortest

3More precisely, suppose a particular UE has a coherence bandwidth of B̌c ≥ Bc
and a coherence time of Ťc ≥ Tc. Let k1 = bB̌c/Bcc and k2 = bŤc/Tcc, then the UE
only needs to send pilots in every k1th coherence block in the frequency dimension
and every k2th coherence block in the time dimension.

4The antenna radiation pattern also affects the (effective) coherence time and it
might change depending on the antenna design and carrier frequency [321].
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and longest path). To give quantitative numbers, suppose the carrier
frequency is 2GHz, which gives the wavelength λ = 15 cm. In an outdoor
scenario with Tc = 1ms and Bc = 200 kHz, we can support mobility
of υ = 37.5m/s = 135 km/h and delay spread of 2.5µs (i.e., 750m
path differences). The coherence block contains τc = 200 samples in
this scenario that supports high mobility and high channel dispersion.
In an indoor scenario with Tc = 50ms and Bc = 1MHz, we can
instead support mobility of υ = 0.75m/s = 2.7 km/h and delay spread
of 0.5µs (or 150m path differences). The coherence block contains
τc = 50 000 samples in this scenario with low mobility and low channel
dispersion.

2.2 Correlated Rayleigh Fading

The channel response between UE k in cell l and the BS in cell j is
denoted by hjlk ∈ CMj , where each of the elements corresponds to the
channel response from the UE to one of the BS’s Mj antennas. Notice
that the superscript of hjlk is the BS index and the subscript identifies
the cell and index of the UE. The channel response is the same in both
UL and DL of a coherence block. For notational convenience, we use hjlk
for the UL channel and (hjlk)H for the DL channel, although there is only
a transpose and not any complex conjugate in practice. The additional
conjugation does not change the SE or any other performance metric,
but simplifies the notation.

Since the channel response is a vector, it is characterized by its
norm and its direction in the vector space. Both are random variables
in a fading channel. The channel model characterizes their respective
distribution and statistical independence/dependence.

Definition 2.3 (Spatial channel correlation). A fading channel h ∈ CM is
spatially uncorrelated if the channel gain ‖h‖2 and the channel direction
h/‖h‖ are independent random variables, and the channel direction
is uniformly distributed over the unit-sphere in CM . The channel is
otherwise spatially correlated.

An example of a spatially uncorrelated channel model is the uncor-
related Rayleigh fading, which was defined in (1.24). Practical channels
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are generally spatially correlated, also known as having space-selective
fading [254], since the antennas have non-uniform radiation patterns
and the physical propagation environment makes some spatial direc-
tions more probable to carry strong signals from the transmitter to
the receiver than other directions. The spatial channel correlation is
particularly important for large arrays since these have a good spatial
resolution as compared to the number of scattering clusters (see Sec-
tion 7.3 on p. 482 for further details). Therefore, in the remainder of
this monograph, we concentrate on correlated Rayleigh fading channels
such that

hjlk ∼ NC
(
0Mj ,R

j
lk

)
(2.1)

where Rj
lk ∈ CMj×Mj is the positive semi-definite5 spatial correlation

matrix (and it is also the covariance matrix due to the zero mean).
This matrix is assumed to be known at the BS and the estimation of
such matrices is discussed in Section 3.3.3 on p. 260. The Gaussian
distribution is used to model the small-scale fading variations. The
channel response is assumed to take a new independent realization from
this distribution in every coherence block, as a stationary ergodic random
process. The spatial correlation matrix, on the other hand, describes
the macroscopic propagation effects, including the antenna gains and
radiation patterns at the transmitter and receiver. The normalized trace

βjlk = 1
Mj

tr
(
Rj
lk

)
(2.2)

determines the average channel gain from one of the antennas at BS j
to UE k in cell l. Uncorrelated Rayleigh fading with Rj

lk = βjlkIMj is a
special case of this model, but the spatial correlation matrix is in general
not diagonal. The parameter βjlk is also referred to as the large-scale
fading coefficient and is often modeled in decibels as

βjlk = Υ− 10α log10

(
djlk

1 km

)
+ F jlk (2.3)

where djlk [km] is the distance between the transmitter and the receiver,
the pathloss exponent α determines how fast the signal power decays

5A Hermitian matrix is positive definite or positive semi-definite if and only if
all of its eigenvalues are positive or non-negative, respectively.
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with the distance, and Υ determines the median channel gain at a
reference distance of 1 km. In theoretical studies, the parameters Υ and
α can be computed according to one of the many established propagation
models; see for example [287]. These parameters are functions of the
carrier frequency, antenna gains, and vertical heights of the antennas,
which are derived from fitting (2.3) to measurements. The only non-
deterministic term in (2.3) is F jlk ∼ N (0, σ2

sf). This term is called the
shadow fading and creates log-normal random variations around the
nominal value Υ− 10α log10(djlk/(1 km)) [dB]. The shadow fading can
either be viewed as a model of physical blockage from large obstacles
or simply as a random correction term to obtain a model that better
fits practical channel measurements. The variance σ2

sf of the shadow
fading determines how large the random variations are, and is often
reported in terms of the standard deviation σsf . The latter is considered
a constant here, but it can also depend on the cell indices and other
parameters.

The eigenstructure of Rj
lk determines the spatial channel correlation

of the channel hjlk; that is, which spatial directions are statistically
more likely to contain strong signal components than others. Strong
spatial correlation is characterized by large eigenvalue variations. An
example of how to generate Rj

lk is provided in Section 2.6, while detailed
modeling is considered in Section 7.3 on p. 482.

Remark 2.2 (A generative model for channel vectors). We can generate
a random channel vector h ∼ NC (0M ,R) as follows. Let the eigenvalue
decomposition of R ∈ CM×M be given as R = UDUH, where D ∈ Rr×r

is a diagonal matrix containing the r = rank(R) positive non-zero
eigenvalues of R and U ∈ CM×r consists of the associated eigenvectors,
such that UHU = Ir. Then, h can be generated as

h = R 1
2 ě = UD 1

2 UHě ∼ UD 1
2 e (2.4)

where ě ∼ NC (0M , IM ), e ∼ NC (0r, Ir), and the last step implies that
the distributions of h and UD 1

2 e are identical. It is straightforward
to verify that h is a complex Gaussian vector with zero mean and
spatial correlation matrix E{hhH} = R. Moreover, we can clearly see
that the generative model is driven by a random vector with r ≤ M
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degrees of freedom. This seemingly negative impact of spatial channel
correlation is further discussed in Section 2.4. The expression in (2.4)
is also referred to as the Karhunen-Loeve expansion of h.

By studying correlated Rayleigh fading channels, we can capture
some important aspects of practical Massive MIMO channels and yet
analyze the performance in a tractable way. What are the limiting
assumptions behind this model? First, the model assumes that the mean
value is zero. Suppose a particular channel response has a non-zero
mean h̄jlk, in the sense that hjlk ∼ NC

(
h̄jlk,R

j
lk

)
. The communication

performance over such a channel is typically better than the performance
over the corresponding zero-mean channel with the same correlation
matrix Rj

lk + h̄jlk(h̄jlk)H, since the average power E{‖hjlk‖2} is the same
but there is more randomness in the zero-mean case. Hence, it is a
pessimistic assumption to consider zero-mean channels. Second, the
model assumes that the channel is Gaussian distributed, which is not
completely true in practice. However, as explained later in Section 2.5,
the channel hardening and favorable propagation phenomena make
the communication performance almost independent of the small-scale
fading realizations; it mainly depends on the first and second order
moments of the channels, which represent the large-scale fading. Hence,
most of the results in this monograph hold for other channel distributions
as well (as long as some technical conditions on the higher-order moments
are satisfied).

Remark 2.3 (Mobility). The channel fading model describes random
variations caused by microscopic movements that affect the multipath
propagation, while the spatial correlation matrix describes macroscopic
effects such as pathloss, shadowing, and spatial channel correlation. The
capacity analysis assumes stationary ergodic fading channels with fixed
statistics, which limits the scope to microscopic mobility.6 Macroscopic
mobility (e.g., for UEs in moving cars) can be handled by dividing the
time axis into segments where the channel statistics are approximately

6If a UE’s mobility path is known a priori, its long-term statistics can be defined
and used for ergodic capacity analysis. However, if the mobility is considered random,
then the ergodic approach would require the UE to visit all possible locations before
the signal can be decoded, making the results practically questionable.
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fixed and then computing a separate ergodic SE for each segment.
This makes practical sense in Massive MIMO if large communication
bandwidths are used, so that we can transmit sufficiently long codewords
to approach the ergodic capacity also in short time segments. The
channel hardening also improves the convergence to the ergodic capacity
(or SE), since the fading variations are smaller than in single-antenna
systems. Under extremely high mobility or short-packet transmissions,
other performance metrics such as bit error rate (BER) and outage
capacity are more suitable [314].

2.3 System Model for Uplink and Downlink

Having defined Massive MIMO, we will now define the UL and DL
system models that are used in the remainder of this monograph.

2.3.1 Uplink

The UL transmission in Massive MIMO is illustrated in Figure 2.3. The
received UL signal yj ∈ CMj at BS j is modeled as

yj =
L∑

l=1

Kl∑

k=1
hjlkslk + nj

=
Kj∑

k=1
hjjksjk

︸ ︷︷ ︸
Desired signals

+
L∑

l=1
l 6=j

Kl∑

i=1
hjlisli

︸ ︷︷ ︸
Inter-cell interference

+ nj

︸︷︷︸
Noise

(2.5)

where nj ∼ NC(0Mj , σ
2
ULIMj ) is independent additive receiver noise

with zero mean and variance σ2
UL. The UL signal from UE k in cell l

is denoted by slk ∈ C and has power plk = E{|slk|2}, irrespective
of whether it is a random payload data signal slk ∼ NC(0, plk) or a
deterministic pilot signal with plk = |slk|2. The channels are constant
within a coherence block, while the signals and noise take new realization
at every sample. During data transmission, the BS in cell j selects the
receive combining vector vjk ∈ CMj to separate the signal from its kth
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BS j

UE k,  cell l

hj
lk

Channel

BS l

UL signal

Figure 2.3: Illustration of the UL Massive MIMO transmission in cell j and cell l.
The channel vector between BS j and UE k in cell l is called hjlk.

desired UE from the interference as

vH
jkyj = vH

jkh
j
jksjk

︸ ︷︷ ︸
Desired signal

+
Kj∑

i=1
i6=k

vH
jkh

j
jisji

︸ ︷︷ ︸
Intra-cell signals

+
L∑

l=1
l 6=j

Kl∑

i=1
vH
jkh

j
lisli

︸ ︷︷ ︸
Inter-cell interference

+ vH
jknj

︸ ︷︷ ︸
Noise

. (2.6)

The selection of combining vectors, based on estimated channels, and
the corresponding UL SEs will be studied in Section 4.1 on p. 275.
Note that receive combining is linear processing scheme that is also
known as linear detection. Recall from Figure 1.18 that linear schemes
provides nearly the same performance as non-linear schemes when the
antenna-UE ratio is large.

2.3.2 Downlink

The DL transmission in Massive MIMO is illustrated in Figure 2.4. The
BS in cell l transmits the DL signal

xl =
Kl∑

i=1
wliςli (2.7)

where ςlk ∼ NC(0, ρlk) is the DL data signal intended for UE k in the
cell and ρlk is the signal power. This signal is assigned to a transmit
precoding vector wlk ∈ CMl that determines the spatial directivity of
the transmission. The precoding vector satisfies E{‖wlk‖2} = 1, such
that E{‖wlkςlk‖2} = ρlk is the transmit power allocated to this UE.
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BS j

UE k,  cell l

Channel

BS l

DL precoding

(hj
lk )H

Figure 2.4: Illustration of the DL Massive MIMO transmission in cell j and cell l.
The channel vector between BS j and UE k in cell l is called hjlk.

The received signal yjk ∈ C at UE k in cell j is modeled as

yjk =
L∑

l=1
(hljk)Hxl + njk

=
L∑

l=1

Kl∑

i=1
(hljk)Hwliςli + njk

= (hjjk)
Hwjkςjk

︸ ︷︷ ︸
Desired signal

+
Kj∑

i=1
i 6=k

(hjjk)
Hwjiςji

︸ ︷︷ ︸
Intra-cell interference

+
L∑

l=1
l 6=j

Kl∑

i=1
(hljk)Hwliςli

︸ ︷︷ ︸
Inter-cell interference

+ njk

︸︷︷︸
Noise

(2.8)

where njk ∼ NC(0, σ2
DL) is independent additive receiver noise with

variance σ2
DL. The channels are constant within a coherence block, while

the signals and noise take new realization at every sample. The selection
of transmit precoding vectors and the corresponding DL SEs will be
studied in Section 4.3 on p. 316.

2.4 Basic Impact of Spatial Channel Correlation

There is a wide-spread belief that spatial channel correlation is detrimen-
tal for MIMO communications. This is indeed the case for single-user
point-to-point MIMO channels with multiple antennas at both trans-
mitter and receiver [168, 234]. However, for multiuser communications
with single-antenna UEs the picture changes because it is the collection



2.4. Basic Impact of Spatial Channel Correlation 229

of the UEs’ spatial correlation matrices that determines the network
performance. The UEs are generally physically separated by multiple
wavelengths so that their channels are well modeled as statistically
uncorrelated. In addition, although the channel of each UE can exhibit
high spatial correlation at the BS, the spatial correlation matrices can
be highly different between UEs. These are two fundamental differences
from a point-to-point MIMO channel, where spatial channel correlation
is seen from both the transmitter and the receiver and where the channel
from the transmit antennas exhibits almost the same spatial correlation
to each of the receive antennas (and vice versa).

To better understand the impact that spatial channel correlation
can have on multiuser MIMO, let us consider the UL of a single-cell
scenario and assume that the channels are perfectly known. The UEs’
channels are distributed as hk ∼ NC (0M ,Rk), for k = 1, . . . ,K, and
we make the slightly artificial assumption that

Rk = KUkUH
k (2.9)

where Uk ∈ CM×M/K are tall unitary matrices (i.e., UH
kUk = IM/K)

and we assume that UH
kUj = 0M/K×M/K for all k 6= j. The factor K in

(2.9) normalizes the average channel gain such that βk = 1
M tr(Rk) = 1.

The channel model described by (2.9) implies that each UE has a
strongly spatially correlated channel with only M/K rather than M
degrees of freedom, which refers to the number of non-zero eigenvalues
of the correlation matrix. However, at the same time the eigenspaces
of the individual correlation matrices are all orthogonal. This means
that, although the UEs’ channels are random, they “live” in mutually
orthogonal subspaces. This fact can be more easily seen from the
Karhunen-Loeve expansion in (2.4) of the channels:

hk =
√
KUkek (2.10)

where ek ∼ NC
(
0M/K , IM/K

)
. To understand the impact of spatial

channel correlation, let us consider the received UL signal y ∈ CM at
the BS, which is given by

y =
K∑

i=1
hisi + n (2.11)
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where si ∈ C, for i = 1, . . . ,K, are the UL signals of power pi, and
n ∼ NC

(
0M , σ2

ULIM
)
is receiver noise. Multiplying y by the correlation-

eigenspace Uk of UE k, we obtain

UH
ky = UH

k

(
K∑

i=1
hisi + n

)

=
K∑

i=1

√
KUH

kUieisi + UH
kn

=
√
Keksk + ňk (2.12)

where ňk = UH
kn ∼ NC(0M/K , σ

2
ULIM/K). Thanks to the structure of

the spatial correlation matrices, the multiuser channel is divided into
K orthogonal single-user channels with M/K effective antennas, which
is advantageous because there is no interference. Based on (2.12), the
average SNR/SINR of UE k is

E {SNRk} = E
{
Kpk‖ek‖2

σ2
UL

}
= Mpk

σ2
UL

(2.13)

which indicates that each UE gets the full array gain of M . One way
of interpreting this result is that the antenna array captures the same
amount of energy, but this energy is concentrated on a subset of the
spatial directions or degrees of freedom.

The scenario above has to be compared to the case where all UEs
share the same correlation matrix R = KUUH, where U ∈ CM×M/K is
a tall unitary matrix, and thus hk ∼ NC (0M ,R), for k = 1, . . . ,K. The
detrimental effect of a common correlation matrix is apparent when we
multiply the received UL signal y by the correlation-eigenspace U:

UHy =
K∑

i=1

√
KUHUeisi + UHn

=
K∑

i=1

√
Keisi + ň (2.14)

where ň = UHn. In contrast to (2.12), this is not a single-user channel,
but a K-user channel with M/K effective uncorrelated antennas. The
common spatial correlation matrix essentially reduces the degrees of
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freedom that all UEs share. In this scenario, spatial channel correlation
has a clear negative impact.

In summary, it is not the individual spatial correlation matrices
that manifest the system behavior, but the collection of all UEs’ cor-
relation matrices. Spatial channel correlation can be very beneficial in
Massive MIMO if the UEs have sufficiently different spatial correlation
matrices. This applies also to small-scale multiuser MIMO systems, as
demonstrated in [373, 97, 87, 340, 52]. The case of totally orthogonal
correlation matrices does hardly occur in practice and simply served as
an extreme example to explain the basic impact that spatial channel
correlation can have on multiuser communications.

2.5 Channel Hardening and Favorable Propagation

Two important properties of multiantenna channels were uncovered in
Section 1: channel hardening and favorable propagation. We will now
provide formal definitions of these properties and interpret them using
the correlated fading model that was introduced in Section 2.2.

2.5.1 Channel Hardening

Channel hardening makes a fading channel behave as deterministic.
This property alleviates the need for combating small-scale fading (e.g.,
by adapting the transmit powers) and improves the DL channel gain
estimation. In Section 4, we will also show that channel hardening can
be utilized to obtain simpler and more intuitive SE expressions.

Definition 2.4 (Channel hardening). A propagation channel hjjk provides
asymptotic channel hardening if

‖hjjk‖2

E{‖hjjk‖2}
→ 1 (2.15)

almost surely as Mj →∞.

This definition says that the gain ‖hjjk‖2 of an arbitrary fading
channel hjjk is close to its mean value when there are many antennas.
This should be interpreted in the sense that the relative deviation from
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the average channel gain E{‖hjjk‖2} = tr(Rj
jk) vanishes asymptotically.

This does not mean that ‖hjjk‖2 → tr(Rj
jk), because both these terms

generally diverge as Mj →∞, but one can interpret the result as
1
Mj
‖hjjk‖2 −

1
Mj

tr(Rj
jk)→ 0 (2.16)

almost surely as Mj → ∞. With correlated Rayleigh fading, hjjk ∼
NC(0Mj ,R

j
jk), a sufficient condition7 for asymptotic channel hardening

is that the spectral norm ‖Rj
jk‖2 of the spatial correlation matrix is

bounded and βjjk = 1
Mj

tr(Rj
jk) remains strictly positive as Mj → ∞.

The interpretation of these asymptotic properties is further discussed
in Section 4.4 on p. 335.

What is important for practical purposes is not the asymptotic
result, but how close to asymptotic channel hardening we are with a
practical number of antennas. This can be quantified by considering

V




‖hjjk‖2

E{‖hjjk‖2}



 =

V{‖hjjk‖2}
(E{‖hjjk‖2})2

(a)=
tr
(
(Rj

jk)
2)

(
tr(Rj

jk)
)2 =

tr
(
(Rj

jk)
2)

(Mjβ
j
jk)2

(2.17)

where (a) follows from applying Lemma B.14 on p. 564. This is the
variance of the expression in (2.15) and it should be close to zero
if channel hardening is to be observed.8 Note that the numerator of
(2.17) is the sum of the squared eigenvalues of Rj

jk, while Mjβ
j
jk in

the denominator is the sum of the eigenvalues. In the special case of
uncorrelated fading, we have Rj

jk = βjjkIMj and hence (2.17) becomes
1/Mj . In this special case, Mj = 100 is typically sufficient to benefit
from channel hardening. Hence, we note that (2.17) should be in order
of 10−2 or smaller to obtain hardening.

The numerator tr((Rj
jk)

2) of (2.17) is a so-called Schur-convex
function of the eigenvalues [166, Example 2.5]. For a given Mj and
average eigenvalue βjjk, this implies that the variance is maximized

7This can be proved by substituting βjjk = tr(Rj
jk)/Mj into the left-hand side of

(2.15) and then applying Lemma B.13 on p. 564.
8A necessary but not sufficient condition for channel hardening is that the

variance goes to zero. This condition implies convergence in (2.15) in probability,
but not almost sure convergence.
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when one eigenvalue is Mjβ
j
jk and the remaining ones are zero, while it

is minimized when all the eigenvalues are equal to βjjk. This suggests
that spatial channel correlation, which is characterized by eigenvalue
variations in Rj

jk, increases (2.17) and thereby reduces the level of
channel hardening that is observed for a given number of antennas.
Another way to view it is that more antennas are required to achieve
a certain value in (2.17) under spatially correlated fading than with
uncorrelated fading.

2.5.2 Favorable Propagation

Favorable propagation makes the directions of two UE channels asymp-
totically orthogonal. This property makes it easier for the BS to mitigate
interference between these UEs, which generally improves the SE and
makes it sufficient to use linear combining and precoding.

Definition 2.5 (Favorable propagation). The pair of channels hjli and
hjjk to BS j provide asymptotically favorable propagation if

(hjli)Hhjjk√
E{‖hjli‖2}E{‖h

j
jk‖2}

→ 0 (2.18)

almost surely as Mj →∞.

This definition says that the inner product of the normalized chan-
nels hjli/

√
E{‖hjli‖2} and hjjk/

√
E{‖hjjk‖2} goes asymptotically to zero.

Since the norms of the channels grow with Mj , favorable propagation
does not imply that the inner product of hjli and hjjk goes to zero; that is,
the channel directions become orthogonal, but not the channel responses.
For correlated Rayleigh fading channels, a sufficient condition for (2.18)
is that the spatial correlation matrices Rj

li and Rj
jk have spectral norms

that are bounded and the average channel gains βjli = 1
Mj

tr(Rj
li) and

βjjk = 1
Mj

tr(Rj
jk) remain strictly positive asMj →∞. Notice that under

this condition, the two channels will also exhibit asymptotic channel
hardening.
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One way to quantify how close to asymptotic favorable propagation
we are with a practical number of antennas is to consider

V





(hjli)Hhjjk√
E{‖hjli‖2}E{‖h

j
jk‖2}



 =

tr
(
Rj
liR

j
jk

)

tr(Rj
li)tr(R

j
jk)

=
tr
(
Rj
liR

j
jk

)

M2
j β

j
liβ

j
jk

(2.19)

which is the variance of the expression in (2.18). This is a measure
of how orthogonal the channel directions are, which determines how
much interference the UEs cause to each other. The connection is
particularly strong when using MR combining/precoding, where the
inner product between the channels appear directly in the received
signals (see (1.40) and (1.45)). Ideally, the variance in (2.19) should
be zero.9 In practice, the variance is non-zero and therefore we can
benefit from using combining/precoding schemes that mitigate inter-
user interference. If both channels have uncorrelated fading, the variance
becomes 1/Mj and thus decreases with an increasing number of antennas.
In general, it is the spatial channel correlation that determines the
variance in (2.19). It is zero if the UEs have orthogonal correlation-
eigenspaces, while the worst-case appears when the UEs have identical
eigenspaces and only a few strong eigenvalues. This result is in line with
the observations made in Section 2.4.

Note that channel hardening and favorable propagation are two
related, but different properties. We described a sufficient condition
under which both properties hold, but it is not a necessary condition.
Generally speaking, a channel model can have both properties, one of
them, or none. The keyhole channel provides favorable propagation,
but not channel hardening [243]. In contrast, two LoS channels (e.g., of
the type in (1.23)) that have the same azimuth angle provide channel
hardening, but not favorable propagation.

Finally, we stress that Massive MIMO does not require or formally
rely on any of these properties, but any multiuser MIMO system per-
forms better when the two properties are satisfied.

9A necessary but not sufficient condition for favorable propagation is that the
variance goes to zero. This condition implies convergence in (2.18) in probability,
but not almost sure convergence.
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2.6 Local Scattering Spatial Correlation Model

Since spatial channel correlation is an important property of multiuser
MIMO, we will now develop a spatial correlation model that will be
used in the numerical examples of subsequent sections. The model is
rather simple, as compared to the state-of-the-art channel models later
described in Section 7.3 on p. 482, but captures some key characteristics
and has an intuitive structure. The subspaces of the correlation matrices
will be parameterized by the azimuth angles to the UEs, making it
easy to determine if two UEs are spatially separable by comparing their
respective angles.

Our goal is to develop a model for the spatial correlation matrix
R ∈ CM×M for a NLoS channel between a UE and a BS equipped with
a ULA. The UE and BS indices are dropped for simplicity. The received
signal at the BS is the superposition of Npath multipath components,
where Npath is a large number. Suppose the scattering is localized
around the UE, while the BS is elevated and thus has no scatterers in
its near-field. Each of the multipath components thus results in a plane
wave that reaches the array from a particular angle ϕ̄n and gives an
array response an ∈ CM similar to the LoS case in (1.23):

an = gn
[
1 e2πjdH sin(ϕ̄n) . . . e2πjdH(M−1) sin(ϕ̄n)

]T
(2.20)

where gn ∈ C accounts for the gain and phase-rotation for this path
and dH is the antenna spacing in the array (measured in number of
wavelengths). The channel response h is the superposition

h =
Npath∑

n=1
an (2.21)

of the array responses of the Npath components. Suppose the angles ϕ̄n
are i.i.d. random variables with angular probability density function
(PDF) f(ϕ̄) and gn are i.i.d. random variables with zero-mean and
variance E{|gn|2}. The variance represents the average gain of the nth
path and the total average gain of the multipath components is denoted
by β = ∑Npath

n=1 E{|gn|2}. The multidimensional central limit theorem
then implies that

h→ NC (0M ,R) , Npath →∞ (2.22)
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where the convergence is in distribution and the correlation matrix is
R = E {∑n anaH

n}. This is the general motivation behind the correlated
Rayleigh fading model. Note that in our particular setup the (l,m)th
element of R is

[R]l,m =
Npath∑

n=1
E
{
|gn|2

}
E
{
e2πjdH(l−1) sin(ϕ̄n)e−2πjdH(m−1) sin(ϕ̄n)

}

= β

∫
e2πjdH(l−m) sin(ϕ̄)f(ϕ̄)dϕ̄ (2.23)

where we used the definition of β and let ϕ̄ denote the angle of an
arbitrary multipath component. The integral expression in (2.23) can
be computed numerically for any angular distribution. Since [R]l,m
depends on the difference l −m, but not on the individual values of
l and m, R is Toeplitz matrix. Due to the assumed lack of scattering
around the BS, it is reasonable to further assume that all the multipath
components originate from a scattering cluster around the UE; that is,
ϕ̄ = ϕ+ δ, where ϕ is a deterministic nominal angle and δ is a random
deviation from the nominal angle with standard deviation σϕ. We refer
to this as the local scattering model and notice that Gaussian distributed
deviations δ ∼ N (0, σ2

ϕ) [4, 313, 363, 373], Laplace distributed deviations
δ ∼ Lap(0, σϕ/

√
2) [225, Section 7.4.2], [161, 256], as well as uniformly

distributed deviations δ ∼ U [−
√

3σϕ,
√

3σϕ] [7, 284, 301, 363] can be
found in the literature.10 The latter case is also known as the one-ring
model, since all the scatterers can be assumed to lie on a circle centered
at the UE. This setup is illustrated in Figure 2.5. We stress that the
correlated fading is caused by the scattering being localized around the
UE, in contrast to the uncorrelated fading case illustrated in Figure 1.11
that also contained rich scattering in the vicinity of the BS.

The standard deviation σϕ ≥ 0 is measured in radians and is called
the angular standard deviation (ASD), since it determines how large
the deviations from the nominal angle are. A reasonable value of σϕ in
urban cellular networks is 10◦ [256], while smaller values are expected

10Since only ϕ ∈ [−π, π] is of interest in the angular domain, the Gaussian and
Laplace distributions can either be truncated to this interval (and scaled to maintain
a PDF that integrates to one) or applied as they are, letting the periodicity of sin(ϕ)
wrap the distribution into the interval of interest.



2.6. Local Scattering Spatial Correlation Model 237

BS

UE

Scattering
clusterMultipath

component

Multipath
component

Nominal angle ϕ

Angular interval with
standard deviation σϕ

. .
 .

Figure 2.5: Illustration of NLoS propagation under the local scattering model, where
the scattering is localized around the UE. Two of the many multipath components
are shown. The nominal angle ϕ and the angular standard deviation (ASD) σϕ of the
multipath components are key parameters to model the spatial correlation matrix.

in flat rural areas and larger values in hilly areas [254].
To illustrate the effect of spatial channel correlation, Figure 2.6

shows the eigenvalues of R in decreasing order, when using the local
scattering model with M = 100 antennas, the nominal angle ϕ = 30◦,
and the ASD σϕ = 10◦. The correlation matrices are normalized such
that tr(R) = M . The aforementioned three distributions of the angular
deviations are compared with the reference case of uncorrelated fading:
R = IM . The figure shows that the spatial channel correlation makes
around 30 of the 100 eigenvalues larger than in the uncorrelated case,
while the remaining eigenvalues are substantially smaller. In fact, a
uniform angular distribution makes 68% of the eigenvalues 30 dB smaller
than in the reference case, while this happens for 40% of the eigenvalues
with Gaussian distribution and 19% with Laplace distribution. These
percentages remain roughly the same if M is increased.

Clearly, a 10◦ ASD leads to high spatial channel correlation with
a low-rank correlation matrix where many eigenvalues are negligibly
small. One should be careful when interpreting this result since it is
based on the rather simple local scattering model. Large eigenvalue
variations are expected in practice, but the angular distribution might
be less smooth (e.g., non-Gaussian with multiple peaks) and also vary
between BS antennas due to near-field scattering; see the measurements
in [121, Figure 4] for an example. Hence, despite the low-rank behavior,
one should not expect the spatial correlation matrices to be parametriz-
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Figure 2.6: Eigenvalues of the spatial correlation matrix R when using the local
scattering model with M = 100, nominal angle ϕ = 30◦, and either Laplace, uniform,
or Gaussian angular distribution with standard deviation σϕ = 10◦. Uncorrelated
fading is shown as a reference case.

able using a nominal angle and a Gaussian/Laplace/uniform angular
distribution in practice.

The spatial channel correlation reduces as σϕ increases. Since the
angles are wrapped in the angular domain, the scatterers become asymp-
totically uniformly distributed between −π and +π as σϕ → ∞ (for
any of the three distributions mentioned above). This does, however,
not lead to fully uncorrelated fading since a ULA has better resolu-
tion in some angular directions than others. The fully uncorrelated
fading case is instead obtained from (2.23) in the pathological case of
sin(δ) ∼ U [−1, 1].

2.6.1 Impact on Channel Hardening and Favorable Propagation

In addition to affecting the rank of the spatial correlation matrix, the
nominal angle and ASD also affect how many antennas are needed to
approach asymptotic channel hardening and favorable propagation.

Recall from Section 2.5.1 that a channel h hardens if ‖h‖2/E{‖h‖2} →
1 as M →∞. Figure 2.7 shows the “variance” of the channel hardening,
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Figure 2.7: Variance of the channel hardening, defined in (2.17), as a function of
the number of antennas. Uncorrelated fading is compared with the local scattering
model, using ϕ = 30◦ and Gaussian angular distribution.

as defined in (2.17), for different numbers of antennas. The smaller the
variance, the more the channel has hardened. We compare uncorrelated
Rayleigh fading with the local scattering model, using ϕ = 30◦ and
a Gaussian angular distribution with σϕ ∈ {10◦, 30◦}. The smallest
variance is achieved with uncorrelated fading, while spatial channel
correlation basically shifts the curve to the right. With σϕ = 30◦, which
represents moderate spatial correlation, the difference from uncorrelated
fading is rather small. However, with σϕ = 10◦, the strong spatial corre-
lation leads to a large loss in channel hardening. For example, M = 200
with σϕ = 10◦ gives the same variance as M = 53 with uncorrelated
fading.

The “variance” of the favorable propagation, as defined in (2.19), is
illustrated in Figure 2.8 for M = 100 antennas. We consider a desired
UE with a fixed nominal angle of 30◦ and an interfering UE with a
nominal angle that is varied between −180◦ and 180◦. A smaller variance
implies that the UEs’ channel directions are closer to be orthogonal.
We once again compare uncorrelated fading with the local scattering
model using a Gaussian angular distribution with σϕ ∈ {10◦, 30◦}. With
uncorrelated fading, the variance is independent of the UEs’ angles,
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Figure 2.8: Variance of the favorable propagation, defined in (2.19), for M = 100.
The desired UE has a nominal angle of 30◦, while the angle of the interfering UE
is varied between −180◦ and 180◦. Uncorrelated fading is compared with the local
scattering model, using Gaussian angular distribution.

as expected. In contrast, the variance depends strongly on the UE
angles when there is spatial channel correlation. When the interfering
UE has around the same nominal angle as the desired UE (or is close
to the mirror reflection angle 180◦ − 30◦ = 150◦), the variance is
substantially larger than with uncorrelated fading. This represents the
case when the UEs have similar spatial correlation matrices. When
the ASD is small, there are visible peaks at 30◦ and 150◦. As the
ASD increases, these peaks widen and eventually merge into a single
peak, as in the case of σϕ = 30◦. In that case, the largest variance
actually occurs when the UEs have different angles. When the UEs
have well-separated angles, the variance is substantially smaller than
with uncorrelated fading. This is the same basic behavior as exemplified
in Section 2.4; spatial channel correlation is good if the UEs have
very different correlation-eigenspaces, while it is bad if the UEs have
similar correlation-eigenspaces. If we compute the average variance over
different angles of the interfering UE, it becomes 0.01 with uncorrelated
fading, 0.0076 for σϕ = 10◦ and 0.012 for σϕ = 30◦. This suggests that
we will, on the average, observe slightly more favorable propagation
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under strong spatial channel correlation, than when the correlation is
weaker.

In summary, spatial channel correlation reduces the level of channel
hardening observed for a given number of antennas. Spatial correla-
tion can also improve the level of favorable propagation if the UEs
have different spatial characteristics. How these behaviors affect the
communication performance will be investigated in later sections.

2.6.2 Approximate Expression with Gaussian Angular Distribution

In the case of δ ∼ N (0, σ2
ϕ), we can compute an approximate closed-

form expression for R when the ASD is small (e.g., below 15◦), such
that sin(δ) ≈ δ and cos(δ) ≈ 1. We can then approximate (2.23) as

[R]l,m = β

∫ ∞

−∞
e2πjdH(l−m) sin(ϕ+δ) 1√

2πσϕ
e
− δ2

2σ2
ϕ dδ

≈ β
∫ ∞

−∞
e2πjdH(l−m) sin(ϕ)e2πjdH(l−m) cos(ϕ)δ 1√

2πσϕ
e
− δ2

2σ2
ϕ dδ

= βe2πjdH(l−m) sin(ϕ)e−
σ2
ϕ
2 (2πdH(l−m) cos(ϕ))2

· 1√
2πσϕ

∫ ∞

−∞
e
−(δ−2πjσ2

ϕdH(l−m) cos(ϕ))2

2σ2
ϕ dδ

︸ ︷︷ ︸
=1

= βe2πjdH(l−m) sin(ϕ)e−
σ2
ϕ
2 (2πdH(l−m) cos(ϕ))2

(2.24)

where the approximation is based on sin(ϕ + δ) = sin(ϕ) cos(δ) +
cos(ϕ) sin(δ) ≈ sin(ϕ) + cos(ϕ)δ. The last equality identifies an in-
tegral over the entire PDF of a Gaussian distribution (which is equal
to one).

The approximate closed-form expression in (2.24) can be utilized
to reduce the computational complexity in simulations. The expression
also offers some insights into the structure of the correlation matrix.
Notice that [R]l,m = βe2πjdH(l−m) sin(ϕ) for σϕ = 0. In this extreme case,
all multipath components arrive from the angle ϕ and give the rank-one
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correlation matrix

R = β
[
e2πjdH sin(ϕ) . . . e2πjdH(M−1) sin(ϕ)

]T

·
[
e−2πjdH sin(ϕ) . . . e−2πjdH(M−1) sin(ϕ)

]
. (2.25)

This matrix is formed based on the array response vector in (1.23)
of a ULA. For σϕ > 0, the diagonal elements are the same, but the

off-diagonal elements decay as e−
σ2
ϕ
2 (2πdH(l−m) cos(ϕ)δ)2

and thus go to
zero as σϕ grows. When the off-diagonal elements reduce, the rank of
the matrix increases. Although the small-angle approximation is not
valid when σϕ is large, the decay indicates that the correlation matrix
becomes increasingly similar to a scaled identity matrix for large ASDs.

We will utilize the local scattering model with Gaussian angular
distribution in the remainder of this monograph to illustrate how spa-
tially correlated channels behave, as compared to uncorrelated channels.
However, one should bear in mind that the local scattering model dates
back to the 1990s, when BSs with relatively few antennas and elevated
deployment at masts were the norm. Practical Massive MIMO channels
are likely to experience scattering in the near-field of the BS, multiple
scattering clusters, and shadowing over the array [121, 122], which are
three key effects not captured by the local scattering model. We return
to channel modeling in Section 7.3 on p. 482.
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2.7 Summary of Key Points in Section 2

• Massive MIMO builds on decades of research insights into
how to design efficient SDMA systems.

• A canonical Massive MIMO network uses a multicarrier TDD
protocol. BS j is equipped with Mj antennas and serves Kj

single-antenna UEs in each channel coherence block.

• By having an antenna-UE ratio Mj/Kj > 1, the BS benefits
from favorable propagation that makes the UEs’ channel
directions almost orthogonal when Mj is large. It is there-
fore sufficient to use linear receive combining and transmit
precoding in Massive MIMO.

• By having Mj � 1, the BS also benefits from channel
hardening that makes the effective channels after combin-
ing/precoding almost immune to small-scale fading.

• The propagation channels and antenna arrays create spatial
channel correlation, which has a non-negligible impact on the
channel hardening and favorable propagation. That is why
the correlated Rayleigh fading model, where the correlation
is represented by the spatial correlation matrices, must be
adopted in the analysis.

• The local scattering correlation model captures the basic
characteristics of spatial channel correlation, in terms of a
nominal angle and ASD. It will be used to exemplify the
impact of spatial channel correlation in later sections.



3
Channel Estimation

This section describes how channel estimation is carried out at the BSs
based on UL pilot transmission. The system model for pilot transmission
is provided in Section 3.1 along with the basic pilot sequence design.
The minimum mean-squared error (MMSE) estimator is derived and
analyzed in Section 3.2. The impacts of spatial channel correlation and
pilot contamination are exemplified in Section 3.3. The computational
complexity is quantified in Section 3.4.1 and two low-complexity channel
estimators are described and compared. Data-aided channel estimation
is briefly discussed in Section 3.5. The key points are summarized in
Section 3.6.

3.1 Uplink Pilot Transmission

To make efficient use of the massive number of antennas, each BS needs
to estimate the channel responses from the UEs that are active in the
current coherence block. It is particularly important for BS j to have
estimates of the channels from the UEs in cell j. Channel estimates from
interfering UEs in other cells can also be useful to perform interference
suppression during data transmission. Recall from Section 2.1 on p. 216

244
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that τp samples are reserved for UL pilot signaling in each coherence
block. Each UE transmits a pilot sequence that spans these τp samples.
The pilot sequence of UE k in cell j is denoted by φjk ∈ Cτp . It is
assumed to have unit-magnitude elements, to obtain a constant power
level, and this implies that ‖φjk‖2 = φH

jkφjk = τp. The elements of φjk
are scaled by the UL transmit power as √pjk and then transmitted as
the signal sjk in (2.5) over τp UL samples, leading to the received UL
signal Yp

j ∈ CMj×τp at BS j. This signal is given by

Yp
j =

Kj∑

k=1

√
pjkhjjkφ

T
jk

︸ ︷︷ ︸
Desired pilots

+
L∑

l=1
l 6=j

Kl∑

i=1

√
plihjliφ

T
li

︸ ︷︷ ︸
Inter-cell pilots

+ Np
j

︸︷︷︸
Noise

(3.1)

where Np
j ∈ CMj×τp is the independent additive receiver noise with i.i.d.

elements distributed as NC(0, σ2
UL). Yp

j is the observation that BS j

can utilize to estimate the channel responses. To estimate the channel
of a particular UE, the BS needs to know which pilot sequence this UE
has transmitted. This is why the pilots are deterministic sequences and
the pilot assignment is typically made when the UE connects to the BS;
for example, using a random access procedure. The pilot assignment
and random access are further discussed in Section 7.2.1 on p. 468.

Suppose, for the sake of argument, that BS j wants to estimate
the channel hjli from an arbitrary UE i in cell l. The BS can then
multiply/correlate Yp

j with the pilot sequence φli of this UE, leading
to the processed received pilot signal ypjli ∈ CMj , given as

ypjli = Yp
jφ

?
li =

L∑

l′=1

Kl′∑

i′=1

√
pl′i′hjl′i′φ

T
l′i′φ

?
li + Np

jφ
?
li (3.2)

which has the same dimension as hjli. For the kth UE in the BS’s own
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cell, (3.2) can be expressed as

ypjjk = Yp
jφ

?
jk

=√pjkhjjkφT
jkφ

?
jk

︸ ︷︷ ︸
Desired pilot

+
Kj∑

i=1
i6=k

√
pjihjjiφT

jiφ
?
jk

︸ ︷︷ ︸
Intra-cell pilots

+
L∑

l=1
l6=j

Kl∑

i=1

√
plihjliφ

T
liφ

?
jk

︸ ︷︷ ︸
Inter-cell pilots

+ Np
jφ

?
jk

︸ ︷︷ ︸
Noise

.

(3.3)

The second and third terms in (3.3) represent interference and contain
inner products of the form φT

liφ
?
jk between the pilot of the desired UE

and the pilot of another UE i in cell l. If the pilot sequences of two UEs
are orthogonal (i.e., φT

liφ
?
jk = 0), then the corresponding interference

term in (3.3) vanishes and does not affect the estimation. Ideally, we
would like all pilot sequences to be orthogonal, but since the pilots are
τp-dimensional vectors, for a given τp, we can only find a set of at most
τp mutually orthogonal sequences. The finite length of the coherence
blocks imposes the constraint τp ≤ τc that makes it impossible to assign
mutually orthogonal pilots to all UEs in practice. Since longer pilots
come at the price of having fewer samples for data transmission, it is
non-trivial to optimize the pilot length; however, a rule-of-thumb is that
τp should always be smaller than τc/2 [49].

We assume that the network utilizes a set of τp mutually orthogonal
pilot sequences. These can be gathered as the columns of the UL pilot
book Φ ∈ Cτp×τp , which satisfies ΦHΦ = τpIτp . It is recommended to
have τp ≥ maxlKl pilots so that each BS can allocate different UL pilot
sequences among its UEs, but this is not mandatory. The reason for
making such an assumption is that the strongest interference usually
originates from within the own cell. The coordination of pilot assignment
across cells is also important and is further discussed in Section 7.2.1
on p. 468. We define the set

Pjk =
{

(l, i) : φli = φjk, l = 1, . . . , L, i = 1, . . . ,Kl

}
(3.4)

with the indices of all UEs that utilize the same pilot sequence as UE k

in cell j. Hence, (l, i) ∈ Pjk implies that UE i in cell l uses the same
pilot as UE k in cell j. Note that (j, k) ∈ Pjk by definition.
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Using the notation in (3.4), the expression in (3.3) simplifies to

ypjjk = √pjkτphjjk
︸ ︷︷ ︸
Desired pilot

+
∑

(l,i)∈Pjk\(j,k)

√
pliτphjli

︸ ︷︷ ︸
Interfering pilots

+ Np
jφ

?
jk

︸ ︷︷ ︸
Noise

. (3.5)

Note that ypjjk = ypjli for all (l, i) ∈ Pjk, since these UEs use the same
pilot. We also note that Np

jφ
?
jk ∼ NC(0Mj , σ

2
ULτpIMj ), since the pilot

sequences are deterministic and ‖φjk‖2 = τp.
The processed received signal ypjjk in (3.5) is a sufficient statistic for

estimating hjjk since there is no loss in useful information as compared
to using the originally received signal Yp

j [175]. The reason is that
the desired component hjjkφ

T
jk in Yp

j can be brought back from ypjjk
by multiplying with φT

jk from the right and the interfering terms are
either zero or can be brought back in the same way. Similarly, ypjli is a
sufficient statistic for estimating hjli. The processed received signal is
used in Section 3.2 for channel estimation.

3.1.1 Design of Mutually Orthogonal Pilot Sequences

The pilot book Φ is designed under the conditions that all elements
have unit magnitude (i.e., |[Φ]i1,i2 | = 1 for i1 = 1, . . . , τp, i2 = 1, . . . , τp)
and that all columns are mutually orthogonal (i.e., ΦHΦ = τpIτp). All
pilot books that satisfy these constraints are equivalent in terms of
estimation performance, but the choice can have an impact on the
practical implementation. In fact, only the mutual orthogonality and
the norms ‖φjk‖ determine the estimation accuracy, while the unit
magnitude assumption was made to keep a constant power level per
sample. We will exemplify two explicit ways to design the pilot books.

A Walsh-Hadamard matrix Φ = Aτp is a τp×τp matrix that satisfies
the two conditions for being a pilot book and whose elements are either
+1 or −1. Since each element is a point in a binary phase-shift keying
(BPSK) constellation, these pilot sequences are easily implemented in
any system that supports BPSK modulated data transmission. Walsh-
Hadamard matrices only exist for some matrix dimensions [339]; for
example, matrices with dimensions of a power of two: τp = 2n for
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n = 0, 1, . . .. These matrices can be generated recursively as follows [29]:

A1 = 1 (3.6)

A2n =
[
A2n−1 A2n−1

A2n−1 −A2n−1

]
n = 1, 2, . . . . (3.7)

To generate a pilot book of arbitrary dimension (e.g., not a power
of two), the discrete Fourier transform (DFT) matrix

Φ =




1 1 1 . . . 1
1 ωτp ω2

τp . . . ω
τp−1
τp

...
...

... . . . ...
1 ω

τp−1
τp ω

2(τp−1)
τp . . . ω

(τp−1)(τp−1)
τp




(3.8)

can be utilized [37], where ωτp = e−j2π/τp is a τpth primitive root of 1.
Note that the elements in (3.8) are located at τp different equally spaced
points on the unit circle, thus they correspond to a τp-ary phase-shift
keying (PSK) constellation.

These two types of sequences are used as spreading codes in UMTS
[2] and in LTE [199]. The UL pilots (called reference signals) in LTE
are, however, based on Zadoff-Chu sequences, which have unit-norm
elements but also the additional feature that each sequence is the cyclic
shift of another sequence [309]. This property is particularly useful to
mitigate inter-symbol interference in single-carrier transmission. See
[309] for algorithms that generate Zadoff-Chu sequences.

3.2 MMSE Channel Estimation

We will now derive an estimator of the channel response hjli, based on
the received pilot signal Yp

j in (3.1) and a pilot book with mutually
orthogonal sequences. The channel is a realization of a random variable,
thus Bayesian estimators are desirable since they take the statistical
distributions of the variables into account; see Appendix B.4 on p. 567 for
an introduction to estimation theory. Bayesian estimators require that
the distributions are known. Recall from (2.1) that hjli ∼ NC(0Mj ,R

j
li).

The minimum mean-squared error (MMSE) estimator of hjli is the
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vector ĥjli that minimizes the MSE E{‖hjli − ĥjli‖2}. It is provided in
the following theorem.

Theorem 3.1. Using a pilot book with mutually orthogonal sequences,
the MMSE estimate of the channel hjli based on the observation Yp

j in
(3.1) is

ĥjli = √pliRj
liΨ

j
liy

p
jli (3.9)

where

Ψj
li =


 ∑

(l′,i′)∈Pli
pl′i′τpRj

l′i′ + σ2
ULIMj



−1

. (3.10)

The estimation error h̃jli = hjli − ĥjli has correlation matrix Cj
li =

E{h̃jli(h̃
j
li)H}, given by

Cj
li = Rj

li − pliτpR
j
liΨ

j
liR

j
li. (3.11)

Proof. The proof is available in Appendix C.2.1 on p. 591.

This theorem provides the mechanism to compute the MMSE esti-
mate of the channel from any UE in the network to BS j. The estimation
quality is represented by the MSE, which is E{‖hjli − ĥjli‖2} = tr(Cj

li)
for the MMSE estimator. A good estimation quality is represented by a
small MSE.

To estimate hjli based on (3.9), the BS should correlate the received
pilot signal with the pilot sequence used by UE i in cell l, as ypjli = Yp

jφ
?
li,

and then multiply this observation with the two matrices Ψj
li and Rj

li.
The matrix Ψj

li is the inverse of the normalized correlation matrix
E{ypjli(y

p
jli)H}/τp of the processed received signal, while Rj

li is the spatial
correlation matrix of the channel to be estimated. These multiplications
suppress interference and noise that do not share the same second-order
statistics as hjli. Note that the MMSE estimator in (3.9) is linear, in the
sense that ĥjli is formed by multiplying the processed received signal
ypjli with matrices. The estimator in Theorem 3.1 is therefore sometimes
called the linear MMSE (LMMSE) estimator. However, we prefer to
use the MMSE notion to make it clear that one cannot further reduce
the MSE by using a non-linear estimator.
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For notational convenience, we define

Ĥj
l =

[
ĥjl1 . . . ĥjlKl

]
(3.12)

as the Mj ×Kl matrix with the estimates of all channels from UEs in
cell l to BS j.

Note that the transmit power appears in the estimation error cor-
relation matrix in (3.11) only as a product with the pilot length: pliτp.
We define the effective SNR during pilot signaling from UE k in cell j
to its serving BS j as

SNRpjk =
pjkτpβ

j
jk

σ2
UL

(3.13)

where we recall that βjjk = 1
Mj

tr(Rj
jk) was defined in (2.2) as the average

channel gain to the antennas in the BS array. The terminology effective
SNR implies that the pilot processing gain τp is included in the SNR.
The processing gain is obtained from the fact that the pilot sequence
spans τp samples. If the pilot sequences are 10 samples long, then the
effective SNR is 10 dB larger than the nominal SNR at a single sample.
This gain is highly desirable for achieving good estimation quality also
for UEs with limited transmit power and/or weak channel conditions.

If we consider the random realizations of the MMSE channel estimate
and the corresponding estimation error in an arbitrary coherence block,
the following statistical properties hold.

Corollary 3.2. The MMSE estimate ĥjli and the estimation error h̃jli
are independent random variables, distributed as follows:

ĥjli ∼ NC
(
0Mj ,R

j
li −Cj

li

)
(3.14)

h̃jli ∼ NC
(
0Mj ,C

j
li

)
. (3.15)

Proof. The proof is available in Appendix C.2.1 on p. 591.

The statistical distributions stated in Corollary 3.2 are useful when
we later compute the SE of each UE. We can also observe that the
average squared norm E{‖ĥjli‖2} = tr(Rj

li) − tr(Cj
li) of the estimated

channel is smaller than that of the true channel, but it increases when



3.2. MMSE Channel Estimation 251

the MSE tr(Cj
li) decreases. In the special case of tr(Cj

li) = 0, we have
E{‖ĥjli‖2} = E{‖hjli‖2} = tr(Rj

li), since the estimate is perfect.
In practice, Theorem 3.1 is particularly important for estimating the

intra-cell channels. However, also the inter-cell channels from any UE in
the entire network to BS j can be estimated. An important observation
can be made by comparing the MMSE estimate in (3.9) of an intra-cell
channel ĥjjk with the estimate ĥjli of a UE in another cell that utilizes
the same pilot sequence (i.e., (l, i) ∈ Pjk which implies φli = φjk and
Pli = Pjk). In this case, we have Ψj

jk = Ψj
li and ypjjk = ypjli, thus

the same matrix inverse is multiplied with the same processed received
signal. It is only the scalar and the first matrix in (3.9) that are different.
If Rj

jk is invertible, we can write the relation as

ĥjli =
√
pli√
pjk

Rj
li(R

j
jk)
−1ĥjjk. (3.16)

This implies that the two estimates are strongly correlated, but generally
the vectors are linearly independent (i.e., non-parallel) since one cannot
write ĥjli as a scalar times ĥjjk unless Rj

li and Rj
jk are equal up to a

scaling factor. In the special case of spatially uncorrelated channels
with Rj

jk = βjjkIMj and Rj
li = βjliIMj , the two channel estimates are

parallel vectors that only differ in scaling. This is an unwanted property
caused by the inability of BS j to separate UEs that have transmitted
the same pilot sequence and have the same spatial characteristics. This
situation is illustrated in Figure 3.1. The following corollary highlights
a key consequence of the colliding pilot transmissions.
Corollary 3.3. Consider UE k in cell j and UE i in cell l. The correlation
matrix of the respective channel estimates at BS j is

E
{
ĥjjk(ĥ

j
li)

H
}

=





√
plipjkτpRj

jkΨ
j
liR

j
li (l, i) ∈ Pjk

0Mj×Mj (l, i) 6∈ Pjk.
(3.17)

The antenna-averaged correlation coefficient is

E
{

(ĥjli)Hĥjjk
}

√
E
{
‖ĥjjk‖2

}
E
{
‖ĥjli‖2

} =





tr
(
Rj
li

Rj
jk

Ψj
li

)
√

tr
(
Rj
jk

Rj
jk

Ψj
li

)
tr(Rj

li
Rj
li

Ψj
li)

(l, i) ∈ Pjk

0 (l, i) 6∈ Pjk
(3.18)
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BS j

UE k,  cell l

BS l

UE k,  cell j

Intended pilot transmission Interfering pilot transmission
Figure 3.1: When two UEs transmit the same pilot sequence, their respective
BSs receive a superposition of their signals—they contaminate each others’ pilot
transmissions. Since it is challenging for the BSs to separate the UEs, the estimates
of their respective channels will be correlated.

despite the fact that E
{

(hjli)Hhjjk
}

= 0 for all UE combinations with
(l, i) 6= (j, k).

Proof. The expression in (3.17) follows from taking the expressions in
(3.9) for the UEs’ channel estimates and then computing the expectation
of their outer products. If (l, i) ∈ Pjk, we have ypjjk = ypjli and then
the non-zero expectation is obtained from direct computation, utilizing
E{ypjli(y

p
jli)H} = τp(Ψj

li)−1. If (l, i) 6∈ Pjk, then ypjjk and ypjli are inde-
pendent, since these vectors contain different channels and independent
noise variables. The expectation is then zero. Finally, (3.18) is obtained
from (3.17) by exploiting the fact that (ĥjli)Hĥjjk = tr(ĥjjk(ĥ

j
li)H) and

simplifying the expression by utilizing that tr(AB) = tr(BA) for any
matrices A and B such that A and BT have the same dimensions.

This corollary describes one of the key characteristics of the pilot
contamination phenomenon: UEs that transmit the same pilot sequence
contaminate each others’ channel estimates. The interference not only
reduces the estimation quality (i.e., increases the MSE) but also makes
the channel estimates statistically dependent—although the true chan-
nels are statistically independent. Pilot contamination has an important
impact beyond channel estimation, since the contamination makes it
particularly hard for the BS to mitigate interference between UEs that
use the same pilot. Pilot contamination is often described as a main
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characteristic and limiting factor of Massive MIMO. It was the key
focus of some of the early works on the topic [208, 131, 169], but the
phenomenon is not unique to Massive MIMO. It exists in most cellular
networks because of the practical necessity to reuse the time-frequency
resources across cells. Pilot contamination can, however, have a greater
impact on Massive MIMO than on conventional networks. This is par-
tially because the large number of UEs requires the pilot sequences
to be reused more frequently in space and partially because the sig-
nal processing in Massive MIMO is particularly good at suppressing
interference between UEs with orthogonal pilots. We return to pilot
contamination in Section 3.3.2 and in the SE analysis in Section 4 on
p. 275.

Recall that the MMSE estimator minimizes the MSE of the channel
estimate, which is defined as

E{‖hjli − ĥjli‖2} = E{‖h̃jli‖2} = E{tr(h̃jli(h̃
j
li)

H)} = tr(Cj
li). (3.19)

To compare the estimation quality obtained with different estimation
schemes in different scenarios, the normalized MSE (NMSE) defined as

NMSEjli = tr(Cj
li)

tr(Rj
li)

(3.20)

is a suitable metric, since it measures the relative estimation error per
antenna. This is a value between 0 (perfect estimation) and 1 (achieved
by using the mean value of the variable, E{hjli}, as the estimate).

Remark 3.1 (Other channel distributions). The MMSE estimator in
Theorem 3.1 utilizes moments of the channel (i.e., the zero mean and
the correlation matrix) as well as the fact that the channel is complex
Gaussian distributed. In practice, the mean value and correlation matrix
are rather easy to estimate, while it is hard to validate how close to
Gaussian the channel distribution is. This is fortunately not a big deal
because the estimator in (3.9) is also the LMMSE estimator for non-
Gaussian channels with zero mean and the same known correlation
matrix (see Appendix B.4 on p. 567). Hence, the same estimation
expression can be used for other types of channels, but the estimate and
estimation error are only uncorrelated in this case (not independent),
which affects the performance analysis.
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3.3 Impact of Spatial Correlation and Pilot Contamination

To understand the basic properties of the MMSE estimator, we will
exemplify how spatial channel correlation and pilot contamination
affects its performance. We will also outline how to acquire the channel
statistics in practice.

3.3.1 Impact of Spatial Correlation on Channel Estimation

The basic properties of channel estimation are best described when we
consider the estimation of the channel response of a UE that has a
unique pilot sequence. The estimation is then only affected by noise
and not by interference. Consider an arbitrary channel h ∼ NC(0M ,R),
where the UE and BS indices are dropped for brevity. Let R = UΛUH

denote the eigenvalue decomposition of the correlation matrix, where
the unitary matrix U ∈ CM×M contains the eigenvectors, also called
eigendirections, and the diagonal matrix Λ = diag(λ1, . . . , λM ) contains
the corresponding eigenvalues. The estimation error correlation matrix
in (3.11) becomes

C = R − pτpR
(
pτpR + σ2

ULIM
)−1

R

= U
(

Λ− pτpΛ
(
pτpΛ + σ2

ULIM
)−1

Λ
)

UH

= U diag
(
λ1 −

pτpλ
2
1

pτpλ1 + σ2
UL
, . . . , λM −

pτpλ
2
M

pτpλM + σ2
UL

)
UH (3.21)

where the second equality follows from the fact that IM = UUH and
U−1U = IM . The last expression in (3.21) is identified as an eigenvalue
decomposition with eigenvectors in U and the mth eigenvalue given by

λm −
pτpλ

2
m

pτpλm + σ2
UL

= σ2
ULλm

pτpλm + σ2
UL

= λm

SNRp λmβ + 1
(3.22)

where SNRp is the effective SNR defined in (3.13) and β = 1
M

∑M
n=1 λn.

Hence, the estimation error correlation matrix C has the same eigen-
vectors as the spatial correlation matrix R, but the eigenvalues are
different and generally smaller due to the subtraction in (3.22). The
eigenvalues of C in (3.22) represent the estimation error variance in each
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Figure 3.2: NMSE in MMSE estimation of a spatially correlated channel, based on
the local scattering model with Gaussian angular distribution and ASD σϕ = 10◦.
The results are averaged over different nominal UE angles.

eigendirection. As the effective SNR increases, all these error variances
reduce and approach zero as SNRp →∞, thus showing that error-free
estimation is possible in this asymptotic regime. Another important
observation from (3.22) is that an eigendirection of R with a large
eigenvalue λm has a smaller normalized error variance

λm
SNRp λm

β
+1

λm
= 1

SNRp λmβ + 1
(3.23)

than an eigendirection with a smaller eigenvalue. The intuition is that the
eigendirections are estimated independently and strong eigendirections
are easier to estimate since the SNR is higher.

These properties are illustrated numerically in Figure 3.2 for spatial
correlation matrices generated by the local scattering model, defined
in (2.23), with Gaussian angular distribution. Figure 3.2 shows the
NMSE, defined in (3.20), as a function of SNRp (the effective SNR)
with either M = 1, M = 10, or M = 100 antennas. The results are
averaged over different uniformly distributed nominal angles between 0◦
and 360◦, while the ASD is σϕ = 10◦. Figure 3.2 shows that the NMSE
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is monotonically decreasing with the SNR, as expected from (3.22). An
NMSE of around 10−2 is achieved at an SNR of 20 dB, which means
that the estimation error variance is only 1% of the original variance of
the channel. Note that this effective SNR can be achieved by having a
nominal SNR of 10 dB and pilot sequences with τp = 10, thus it is not
particularly high.

Interestingly, the NMSE in Figure 3.2 also reduces as more antennas
are added. This property is due to the spatial channel correlation, as seen
from the fact that a spatially uncorrelated channel with R = βI gives
the NMSE 1/(SNRp + 1) which is independent of M . Hence, it is easier
to estimate spatially correlated channels due to the structure in their
statistics. This also implies that the average gain E{‖ĥ‖2} = tr(R−C)
of the estimated channel is larger under spatial correlation.

The impact of spatial channel correlation is further studied in Fig-
ure 3.3, where the NMSE is shown as a function of the ASD σϕ. The
effective SNR is 10 dB and there are M = 100 antennas. Figure 3.3
shows that the error is smaller when the ASD is small (i.e., with high
spatial correlation). This is explained by the fact that most of the chan-
nel’s variance lies in a few eigenvalues when σϕ is small (cf. Figure 2.6).
As concluded from (3.23), it is easier to estimate strong eigendirections
than weaker ones. The NMSE for uncorrelated channels is shown in
Figure 3.3 as a reference. For strongly spatially correlated channels, the
estimation error can be two orders of magnitude smaller than in the
uncorrelated case, while this benefit is basically lost when σϕ reaches
around 40◦.

3.3.2 Impact of Pilot Contamination on Channel Estimation

We will now illustrate the basics of pilot contamination by considering
a scenario where two UEs use the same pilot sequence. BS j estimates
the channel of UE k in its own cell, while UE i in cell l transmits the
same pilot. The mutual interference that these UEs cause during pilot
transmission has two main consequences:

• The channel estimates become correlated;

• The estimation quality is reduced.
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Figure 3.3: NMSE in estimation of a spatially correlated channel, as a function
of the ASD in the local scattering model, defined in (2.23), with Gaussian angular
distribution. The effective SNR is 10 dB and M = 100.

Starting with the former, Figure 3.4 shows the antenna-averaged corre-
lation coefficient between the channel estimates, as defined in (3.18),
when the effective SNR from the desired UE is 10 dB and the interfering
signal is 10 dB weaker than that. Both correlation matrices are generated
using the local scattering model with Gaussian angular distribution and
ASD σϕ = 10◦, but using different nominal angles at BS j. The desired
UE has a fixed angle of 30◦ (measured as described in Figure 2.5), while
the angle of the interfering UE is varied between −180◦ and 180◦.

The first observation from Figure 3.4 is that the UE angles play
a key role when the BS is equipped with multiple antennas. If the
UEs have the same angle, the correlation coefficient is one, meaning
that the estimates are identical (up to a scaling factor). If the UE
angles are well separated, the correlation coefficient is instead nearly
zero. This indicates that not only the average channel gains but also
the eigenstructure of the spatial correlation matrices determine the
impact of pilot contamination. This is different from the single-antenna
case (and multiantenna case with uncorrelated fading), in which the
correlation coefficient is equal to one, irrespective of the UE angles. The
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Figure 3.4: Absolute value of the antenna-averaged correlation coefficient in (3.18)
between the channel estimates of the desired UE and an interfering UE that uses the
same pilot. The local scattering model with Gaussian angular distribution is used
and the desired UE has a nominal angle of 30◦, while the angle of the interfering UE
is varied between −180◦ and 180◦.

conclusion is that spatial channel correlation can mitigate the impact
of pilot contamination and we expect this to happen also with other
spatially correlated channel models. Depending on the array geometry
there might be certain angle pairs that give a resonance behavior in
the multiantenna case. Since we consider a horizontal ULA in this
simulation, the array cannot separate signals arriving from 30◦ and
from the mirror reflection angle 180◦ − 30◦ = 150◦.

The second main consequence of pilot contamination is the reduced
estimation quality. We will study this impact in the same scenario
as above. Figure 3.5 shows the NMSE of the estimate of the desired
channel with M = 100 antennas and either uncorrelated fading or the
local scattering model with ASD σϕ = 10◦. The effective SNR from the
desired UE is 10 dB and the interfering signal is either equally strong,
10dB weaker, or 20 dB weaker. In the spatially correlated case, when
the UE angles are well separated, the NMSE is around 0.04 irrespective
of how strong the interfering pilot signal is. This implies that the pilot
contamination has a negligible impact on the estimation quality when
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Figure 3.5: NMSE in estimation of the desired UE’s channel when there is an
interfering UE, which uses the same pilot. There are M = 100 antennas. The local
scattering model with Gaussian angular distribution is used and the desired UE has
a nominal angle of 30◦, while the angle of the interfering UE is varied between −180◦
and 180◦. The NMSE with uncorrelated fading is shown as reference.

the UEs have nearly orthogonal correlation-eigenspaces. The NMSE
increases when the UEs have similar angles, particularly when the
interfering UE has a strong channel to the BS. If the UEs’ channels
instead exhibit uncorrelated fading, the NMSEs are consistently larger
than under spatial correlation and also angle-independent. Hence, spatial
channel correlation is helpful in practice to improve the estimation
quality under pilot contamination.

In the extreme case of Rj
jkR

j
li = 0Mj×Mj , the UE channels have

orthogonal correlation-eigenspaces. The antenna-averaged correlation
coefficient between the channel estimates, defined in (3.18), is then zero.
Furthermore, the estimation error correlation matrix in (3.11) simplifies
as

Cj
jk = Rj

jk − pjkτpR
j
jk

(
pjkτpRj

jk + pliτpRj
li + σ2

ULIMj

)−1
Rj
jk

= Rj
jk − pjkτpR

j
jk

(
pjkτpRj

jk + σ2
ULIMj

)−1
Rj
jk (3.24)

which does not depend on the interfering UE. This property is easily
proved by using Lemma B.6 on p. 560. Consequently, it is theoretically
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possible to let two UEs share a pilot sequence, without causing pilot
contamination, if their spatial correlation matrices satisfy the orthogo-
nality condition Rj

jkR
j
li = 0Mj×Mj . This can theoretically happen under

strong spatial channel correlation, while it will never happen for spa-
tially uncorrelated channels. However, Rj

jkR
j
li ≈ 0Mj×Mj can happen

when the interfering UE has a very weak channel. These behaviors have
been utilized in [154, 363], among others, to guide the pilot assignment
and UE scheduling in Massive MIMO.

3.3.3 Imperfect Statistical Knowledge

The MMSE estimator utilizes the channel statistics. For example, if
BS j wants to estimate the channel to UE i in cell j, it can only apply
the estimator in Theorem 3.1 if it knows the correlation matrix Rj

li and
the sum of the correlation matrices, (Ψj

li)−1, of the UEs that utilize
the same pilot sequence. We will exemplify how BS j can estimate the
correlation matrix Rj

li of the channel hjli ∼ NC(0Mj ,R
j
li). We will then

describe how (Ψj
li)−1 can be obtained in a similar manner. The UE and

BS indices are dropped for simplicity.
In general, the BS observes many realizations of h = [h1 . . . hM ]T in

different coherence blocks, distributed over time and frequency. Suppose
the BS has made N independent observations h[1], . . . ,h[N ], where
h[n] = [h1[n] . . . hM [n]]T is the nth observation. For a particular an-
tenna index m, the law of large numbers (see Lemma B.12 on p. 564)
implies that the sample variance ∑N

n=1
1
N |hm[n]|2 converges (almost

surely) to the true variance E{|hm|2} as N → ∞. The standard de-
viation of the sample variance decays as 1/

√
N [175], thus a small

number of observations is sufficient to get a good variance estimate.
The corresponding approach to estimate the M ×M correlation matrix
R is to form the sample correlation matrix

R̂sample = 1
N

N∑

n=1
h[n](h[n])H. (3.25)

Each element of R̂sample converges to the corresponding element of R
as described above. However, it is more challenging to obtain a sample
correlation matrix whose eigenvalues and eigenvectors are well aligned
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with those of R, because the estimation errors in all the M2 elements of
R̂sample affect the eigenstructure. This might be important for channel
estimation, since the MMSE estimator exploits the eigenstructure of
R to obtain a better estimate. Fortunately, there are techniques to
make the channel estimation in Massive MIMO robust to imperfect
knowledge of the spatial correlation matrix [57, 189, 299]. Note that
only the diagonal elements of R are essential for Bayesian estimation,
because they describe the variance of the unknown variables, while the
off-diagonal elements only describe the correlation between variables.
Hence, we can alternatively form the diagonalized sample correlation
matrix

R̂diagonal =




1
N

∑N
n=1 |h1[n]|2

. . .
1
N

∑N
n=1 |hM [n]|2


 (3.26)

by ignoring the correlation between the elements in h. If R̂diagonal is
used for channel estimation instead of R, we will effectively estimate
each element hm separately from the other elements of h, as if we only
have one BS antenna. In other words, we are not exploiting the spatial
channel correlation.

It was proposed in [299] to estimate the spatial correlation matrix
as the convex combination

R̂(c) = cR̂sample + (1− c)R̂diagonal (3.27)

between the conventional sample correlation matrix and the diagonalized
sample correlation matrix. The diagonal elements of R̂(c) are the same
as in R̂diagonal, while the off-diagonal elements are proportional to
c ∈ [0, 1]. A small value of c reduces the off-diagonal elements and thus
can be used to purposely underestimate the correlation between the
channel coefficients. This can be viewed as a regularization of R̂sample.
The parameter c can be optimized experimentally to achieve robust
estimation under imperfect correlation matrix knowledge (i.e., for finite
N). In this single-user example, the NMSE of any linear estimator
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Figure 3.6: NMSE in the estimation of a spatially correlated channel with ASD
σϕ = 10◦, when having imperfect spatial correlation matrix knowledge, as a function
of the number of samples used to compute the correlation matrix estimate.

ĥ = AYpφ? can be computed as

NMSE(A) = 1− 2√pτp< (tr(RA))− τptr
(
A(pτpR + σ2

ULIM )AH
)

tr(R)
(3.28)

where the matrix A specifies which linear estimator is used. The
true MMSE estimator in Theorem 3.1 is given by A = √pR(pτpR +
σ2

ULIM )−1, while the estimated correlation matrix in (3.27) can be
used to select A(c) = √pR̂(c)(pτpR̂(c) + σ2

ULIM )−1 instead. This is a
heuristic estimator, but c can be optimized to get a small NMSE(A(c)).

The average NMSE with imperfect correlation matrix knowledge
is shown in Figure 3.6. We consider the local scattering model with
Gaussian angular distribution and ASD σϕ = 10◦, M = 100 antennas,
and an effective SNR of 10 dB. The NMSE is averaged over different
nominal angles (from 0◦ to 360◦) and different sample realizations, and
c is numerically optimized for each N to achieve a low average NMSE.
Figure 3.6 shows the NMSE as a function of the number of samples. The
first few samples are essential to get a reasonable estimate of R̂diagonal.
With as little as N = 10 samples, we can exploit some of the spatial
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channel correlation to achieve an NMSE that is smaller than for an
uncorrelated channel (with a known correlation matrix that equals the
main diagonal of R). The NMSE decreases with N and asymptotically
approaches the lower bound where R is completely known. Interestingly,
not more than 200 samples are needed to achieve an NMSE close to
the lower bound. This equals 2M , which indicates that the channel
estimation is rather insensitive to having imperfect channel statistics.

A similar approach as the one detailed above can be taken to estimate
Ψj
li [57]. This matrix is given by Ψj

li = τp(E{ypjli(y
p
jli)H})−1 and thus

particularly convenient to estimate since we can use the received signals
from the existing pilot transmissions to form a sample correlation
matrix (which is then regularized as described above). In contrast, the
estimation of the individual correlation matrices requires additional
pilot signals that are designed for correlation matrix estimation; see
[57] for a comparison of two approaches.

In practice, the spatial correlation matrix evolves over time, due to
mobility that creates variations in the large-scale fading. It is necessary
to track the changes, which can be accomplished by computing the
sample correlation matrix over a sliding time window that contains N
samples. The number of samples is selected to achieve a sufficiently good
estimate, while the time-frequency intervals between samples can be
selected based on the UE mobility. The measurements in [332] suggest
that the large-scale fading is constant for a time interval around 100
times longer than the coherence time, thus it is possible to obtain
hundreds of samples for correlation matrix estimation if necessary. The
overhead for correlation matrix estimation under mobility is quantified
in [57].

Remark 3.2 (Correlation matrix estimation from a small number of sam-
ples). In addition to the regularization approach described above, there
are alternative ways to generate correlation matrix estimates from a
relatively small number of samples N . The conventional sample correla-
tion matrix is a consistent estimator when N →∞ for a fixed M , which
is a limit that is hard to approach if M is large. If N is comparable in
size to M , one can instead use G-estimation methods [217, 93], which
provide consistent estimators when M,N →∞ with a fixed ratio. In
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addition, the paper [211] considers the case N < M , in which R̂sample
is rank-deficient, and generates a full-rank correlation estimate that
retains the eigenvectors of R̂sample (in contrast to the regularization ap-
proach above that changes the eigenvectors). The correlation estimation
can be further improved if the channels have a special structure that is
known a priori. For example, [137] provides algorithms for estimating
the correlation matrices of channels that have a limited angle-delay
support that is also separable between UEs. There are also methods to
track how a low-rank subspace in R evolves over time [105].

3.4 Computational Complexity and Low-Complexity Estimators

The downside of having many antennas is that there are many signal
observations to process in the digital baseband. We will now assess the
computational complexity of MMSE estimation, using the methodology
described in Appendix B.1.1 on p. 558, where only the numbers of
complex multiplications and divisions are counted. The MMSE channel
estimates in Theorem 3.1 are computed at BS j once per coherence block
for each of the Kj intra-cell UEs. The inter-cell channels are optional to
estimate, but if they are utilized in the precoding/combining, they also
need to be computed once per coherence block. The processed received
pilot signal at BS j is multiplied in (3.9) with two Mj ×Mj matrices.
Since these matrices only depend on the spatial correlation matrices, the
matrix product can be precomputed and only updated when the channel
statistics have changed substantially (e.g., due to UE mobility or new
UE scheduling decisions). Note that the channel statistics typically are
the same over all subcarriers, so only one matrix is precomputed per
UE. The precomputation generally requires (4M3

j −Mj)/3 complex
multiplications and Mj complex divisions per UE (see Lemma B.2 on
p. 559 for details). If we estimate the channels from multiple UEs that
use the same pilot sequence, we only need to compute the Ψ-matrix
once and thus only spend M3

j multiplications per additional UE (except
the first one).

In contrast to the cubic complexity of the precomputations, the
estimation in every coherence block only entails correlating the received
signal matrix with the pilot sequence as ypjli = Yp

jφ
?
li and then mul-
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tiplying it with the precomputed statistical matrix √pliRj
liΨ

j
li. These

operations require Mjτp + M2
j complex multiplications per UE (see

Lemma B.1 on p. 559) and can be parallelized by computing τp +Mj

complex multiplications separately for each of the Mj antennas. Hence,
one can imagine a hardware implementation with very efficient com-
putations in every coherence block, based on precomputed statistical
matrices, and a less time-critical outer process that updates the precom-
puted matrices at regular intervals. If we need to estimate the channels
to another UE that uses the same pilot, the additional cost is only M2

j

multiplications since ypjli is already known.

Remark 3.3 (Polynomial matrix expansion). In case the hardware imple-
mentation cannot handle the computational complexity of exact MMSE
estimation, one can resort to approximations. For example, [299] pro-
posed a method to rewrite the matrix inverse in the MMSE estimation
expression as an equivalent polynomial matrix expansion, which can
then be truncated since the lower-order polynomial terms have the most
significant impact on the estimate. A similar approach can be taken
for receive combining and transmit precoding, as explained later in
Remark 4.2 on p. 296, where the main principle is also outlined. The
complexity of this method is quadratic in Mj and linear in the number
of terms that are used in the truncated polynomial. Another option
is to utilize an estimator that from the beginning does not require
matrix-matrix multiplications or large-dimensional inversions. Some
options are described next.

3.4.1 Alternative Channel Estimation Schemes

If BS j cannot manage the computational complexity of MMSE channel
estimation, there are alternative estimation schemes. An arbitrary linear
estimator of hjli, based on ypjli in (3.2), can be written as Aj

liy
p
jli, for

some deterministic matrix Aj
li ∈ CMj×Mj that specifies the estimation

scheme. The corresponding MSE E{‖hjli −Aj
liy

p
jli‖2} can be computed
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as

MSE(Aj
li) = tr(Rj

li)− 2√pliτp<
(
tr(Rj

liA
j
li)
)

+ τptr
(

Aj
li

(
Ψj
li

)−1
(Aj

li)
H

)
(3.29)

with Ψj
li given by (3.10). The MMSE estimator is obtained for Aj

li =√
pliRj

liΨ
j
li, but we can alternatively choose an Aj

li that makes the
estimate easier to compute. Diagonal matrices are particularly useful
to reduce the computational complexity since each element of ypjli can
then be multiplied with only one scalar instead of Mj non-zero scalars
from Aj

li. For any deterministic Aj
li, the estimate Aj

liy
p
jli and estimation

error h̃jli = hjli−Aj
liy

p
jli are Gaussian distributed, but they are generally

correlated random variables—an important difference from the MMSE
estimator. In particular, we have that

E
{
ĥjli(h̃

j
li)

H
}

= √pliτpAj
liR

j
li − τpA

j
li

(
Ψj
li

)−1
(Aj

li)
H. (3.30)

We will now provide two examples for selecting the matrix Aj
li.

Element-wise MMSE Channel Estimator

Based on the discussion in Section 3.3.3, one obvious alternative is to
estimate each element of hjli separately and thereby ignore the correlation
between the elements. More precisely, we can look at the processed
received signal in (3.2) and only consider one of the Mj elements at a
time. The following corollary provides the resulting element-wise MMSE
(EW-MMSE) estimator.

Corollary 3.4. Based on the observation [ypjli]m, BS j can compute the
MMSE estimate of the mth element [hjli]m of the channel from UE i in
cell l as

[ĥjli]m =
√
pli[Rj

li]mm∑
(l′,i′)∈Pli

pl′i′τp[Rj
l′i′ ]mm + σ2

UL
[ypjli]m. (3.31)
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The estimation error variance of this element is

[Rj
li]mm −

pliτp
(
[Rj

li]mm
)2

∑
(l′,i′)∈Pli

pl′i′τp[Rj
l′i′ ]mm + σ2

UL
. (3.32)

Proof. The proof is identical to that of Theorem 3.1, except that we
only consider one of the elements in ĥjli and the corresponding element
in ypjli to perform the estimation.

The EW-MMSE estimator corresponds to letting Aj
li be diagonal

with

[Aj
li]mm =

√
pli[Rj

li]mm∑
(l′,i′)∈Pli

pl′i′τp[Rj
l′i′ ]mm + σ2

UL
m = 1, . . . ,M. (3.33)

The computational complexity per UE is proportional to Mj , both
when precomputing the fractional expression in (3.31) (at the slow
time scale that the large-scale fading changes) and when multiplying
it with the processed received pilot signal once per coherence block.
This is substantially lower than the complexity of the original MMSE
estimator, except in the special case when all the spatial correlation
matrices are diagonal so that one can estimate each channel element
separately without performance loss. Note that the main complexity
saving comes from the fact that Aj

li is diagonal.
The MSE achieved by the EW-MMSE estimator is obtained by

summing up the estimation error variances from (3.32), which can be
expressed as

MSE = tr(Rj
li)−

M∑

m=1

pliτp
(
[Rj

li]mm
)2

∑
(l′,i′)∈Pli

pl′i′τp[Rj
l′i′ ]mm + σ2

UL
. (3.34)

Although each element is estimated using the MMSE principle, the
vector with estimates and the vector with estimation errors are correlated
when using the EW-MMSE estimator as it follows by inserting (3.33)
into (3.30).
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Least-square Channel Estimator

The EW-MMSE estimator does not utilize the full spatial correlation
matrices, but only the elements on the main diagonals (which can be
estimated as described in (3.26)). In case these partial statistics are
unknown or unreliable (e.g., due to rapid changes in the UE scheduling
in other cells), it might be necessary to consider estimators that require
no prior statistical information. The least-squares (LS) estimator has
been used for this purpose since the beginning of SDMA [125, 37]. In our
setup, we have the observation ypjli in (3.2), which contains the desired
channel in the form of √pliτphjli. The LS estimate of hjli is defined as
the vector ĥjli that minimizes the squared deviation ‖ypjli −

√
pliτpĥjli‖2.

The smallest value is zero and is attained by

ĥjli = 1√
pliτp

ypjli. (3.35)

This is a linear estimator with

Aj
li = 1√

pliτp
IMj (3.36)

and since the matrix is diagonal, the computational complexity per
coherence block is proportional to Mj . The matrix Aj

li has no explicit
dependence on the channel statistics, but it depends on the transmit
power, which the UE might change when the statistics change.

The MSE achieved by the LS estimator in (3.35) cannot be computed
unless the channel statistics are actually known, but it can be obtained
by substituting Aj

li = 1√
pliτp

IMj into (3.29) and simplifying:

MSE = tr


 ∑

(l′,i′)∈Pli\(l,i)

pl′i′

pli
Rj
l′i′ +

σ2
UL

pliτp
IMj


 . (3.37)

Note that, since the LS estimator is suboptimal, the estimate and the
estimation error are correlated:

E
{
ĥjli(h̃

j
li)

H
}

= Rj
li −

1
pliτp

(
Ψj
li

)−1
. (3.38)
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Figure 3.7: NMSE in the estimation of a spatially correlated channel, based on the
local scattering model with Gaussian angular distribution, for different estimators.
The results are averaged over different nominal angles and σϕ = 10◦.

3.4.2 Comparison of Complexity and Estimation Quality

The estimation quality of the MMSE, EW-MMSE, and LS estimators
are compared in Figure 3.7, in terms of NMSE. We consider a scenario
where BS j estimates the channel of its UE k, while a UE in another
cell transmits the same pilot sequence. The effective SNR of the desired
UE is varied from −10dB to 20dB, while the interfering signal is
assumed to always be 10 dB weaker. The local scattering model is
considered with Gaussian angular distribution and ASD σϕ = 10◦, and
the results are averaged over different nominal angles between 0◦ and
360◦. Figure 3.7 shows that the three estimators provide rather different
NMSEs. The MMSE estimator is systematically the best estimator
since it fully exploits the spatial channel correlation. The EW-MMSE
estimator provides decent estimation performance (equivalent to MMSE
estimation of an uncorrelated channel), but there is a substantial gap
from the MMSE estimator—even at high SNR where the error floor
(caused by pilot contamination) has a higher value. The LS estimator
performs very poorly at low SNR where the NMSE is above 1, while
the trivial all-zero estimate ĥjjk = 0Mj gives an NMSE of 1. At higher
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Scheme Correlating with pilot Per UE Precomputation

MMSE Mjτp M2
j

4M3
j−Mj

3
EW-MMSE Mjτp Mj Mj

LS Mjτp – –

Table 3.1: Computational complexity per coherence block for channel estimation.
The first column is the number of multiplications when correlating the received
signal with a pilot sequence and the second column is the multiplications required
for estimating the channel of a UE using that pilot sequence. The third column is
the complexity for precomputation per UE.

SNRs, the LS estimator is comparable to the EW-MMSE estimator, but
their respective error floors are different (if there is pilot contamination).
The LS estimator can provide decent estimates of the channel direction,
hjjk/‖h

j
jk‖, while the lack of statistical information makes it harder to

get the right scaling of the channel norm ‖hjjk‖.
The computational complexities of the MMSE, EW-MMSE, and LS

estimators are summarized in Table 3.1, in terms of complex multipli-
cations. The complexity is divided into three parts: The complexity of
correlating the received signal Yp

j with a pilot sequence, the complexity
of estimating the channel of a UE (after correlating with its pilot),
and the complexity of precomputing the statistical coefficients. The
complexities of these operations were computed in Section 3.4 for the
MMSE estimator, while the complexities of EW-MMSE and LS are
obtained analogously, based on Appendix B.1.1 on p. 558. The MMSE
estimator has the highest complexity, both when computing an estimate
and when precomputing the statistical coefficients. EW-MMSE is more
complex than LS, but the difference is small when comparing the sums
of the first two columns: Mjτp +Mj ≈Mjτp for practical values of τp.

Figure 3.8 illustrates the number of complex multiplications per
coherence block as a function of M in a scenario with K = τp = 10 UEs
in each cell. We have neglected the complexity for precomputation of
matrices that only depend on the channel statistics, as they typically are
constant for a large number of coherence blocks. MMSE has the highest
complexity, followed by EW-MMSE, which reduces the complexity by
45%–90% since the correlation between antennas is not exploited in the
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Figure 3.8: Number of complex multiplications per coherence block with 10 UEs,
when using different channel estimation schemes. The complexity of precomputing
statistical matrices is not accounted for.

channel estimation. The complexity reduction of using LS instead of
EW-MMSE is marginal: for M = 100 we only save an additional 1% by
using LS.

3.5 Data-Aided Channel Estimation and Pilot Decontamination

In scenarios with much pilot contamination, the pilot-based MMSE
estimator in Theorem 3.1 might not be sufficient to get a good esti-
mation quality. The amount of pilot contamination can be reduced by
increasing τp so that each pilot sequence is reused less frequently in
space, but at the price of using fewer samples for data transmission per
coherence block. Alternatively, the UL data sequences can be utilized
for channel estimation, so that the UEs’ channels are discriminated
based on transmitted sequences of length τp+ τu instead of τp. The data
sequences are not known to the BS in advance, but can nonetheless be
used for data-aided estimation, which is classically known as semi-blind
estimation [75] and more recently called pilot decontamination [232].

This approach has been taken in a series of papers on Massive
MIMO [242, 232, 362, 203, 238, 152, 333, 334]. The main principle is
to form an Mj ×Mj sample correlation matrix of the received block
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of UL signals in a coherence block. Since the channels are constant, as
τp+ τu →∞, each of the strongest eigenvalues of the sample correlation
matrix corresponds to one of the UEs and the respective eigenvector
is an estimate of the UE channel (up to a phase ambiguity). BS j

can typically infer that the Kj strongest eigenvalues correspond to
its Kj UEs, while the weaker eigenvalues correspond to interfering
UEs in other cells or receiver noise. By projecting the received signal
onto the eigenspace of the Kj strongest eigenvalues, interference and
noise can be rejected. The eigenvalue-based separation between signal
and interference subspaces can be performed blindly (i.e., without
pilot sequences) [232, 238, 334] or by also exploiting spatial channel
correlation [362], but it is still desired to transmit orthogonal pilot
sequences within each cell to identify which UE corresponds to which
eigenvalue and to resolve the phase ambiguity in the channel estimates
[242, 238]. Since the limit τp + τu →∞ requires the channel coherence
time to grow indefinitely, which will not happen in practice, an exact
separation of signal and interference subspaces is not possible with data-
aided channel estimation and some pilot contamination will remain.1
However, if implemented judiciously, data-aided channel estimation is
always better or equally good as pilot-only MMSE estimation since it
uses more observations in the estimation process. The largest benefits
are observed when the SNR is low (because noise is also mitigated by the
subspace projections) and when there are strong sources of interference
[333]. The downside of data-aided channel estimation is the increased
computational complexity.

Remark 3.4 (Alternative pilot structures). We have considered the co-
herence block structure in Figure 2.2, where all UEs send their pilots
simultaneously, followed by simultaneous transmission of UL data, and
then DL data transmission. There are alternative approaches. One ap-
proach is to time-shift the coherence blocks between cells, such that
some cells send DL data when their neighboring cells send UL pilots and
vice versa [114]. With this approach, there is still inter-cell interference

1In fact, pilot contamination is not an issue if τp + τu → ∞, because then we
can allow for τp =

∑L

j=1 Kj so that each UE can get its own orthogonal pilot while
keeping the channel estimation overhead negligible.
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that reduces the estimation quality, but it is now the BSs in neighboring
cells that cause the largest contamination and not the UEs in those
cells. Hence, the channel estimates of the desired UEs in a given cell
will now be correlated with the channels from neighboring BSs, which is
less critical since these channels are irrelevant during data transmission.

Another approach is to superimpose the pilot sequences on the
UL data transmission, which allows for setting τp = 0 and nonetheless
having τu mutually orthogonal pilot sequences at disposal [320, 328]. The
benefit of this approach is that long pilot sequences can be transmitted
(and reduced infrequently in the network) without sacrificing the number
of samples available for data transmission. The price to pay is additional
interference between pilot and data transmissions, which can be rather
large since, in contrast to the pilot design in this section, there is also
interference between intra-cell UEs during channel estimation. It is
therefore important to divide the transmit power between pilots and
data in a judicious way. A hybrid pilot solution, where some users have
superimposed pilots and some others have conventional pilots, may
bring the best of both paradigms [319].
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3.6 Summary of Key Points in Section 3

• Channel estimation at the BS is key to achieve the full
potential of Massive MIMO. This is typically accomplished
using UL pilot transmission.

• The MMSE estimator exploits the statistical characteristics
to obtain good estimates. Spatial correlation makes it easier
to estimate channels to large antenna arrays. The gains are
robust to imperfect knowledge of the statistics.

• The computational complexity of the MMSE estimator grows
quadratically with the number of antennas. The alternative
EW-MMSE estimator can greatly reduce complexity by ne-
glecting the spatial correlation between antennas. If the
channel statistics are unknown, the LS estimator can be
used instead.

• Since the channel coherence blocks are of limited size, it is
necessary to reuse pilot sequences across cells. The inter-cell
interference increases the estimation errors and also makes
the channel estimates of two UEs that use the same pilot are
correlated. This phenomenon is called pilot contamination.
The correlation is low when the channel gain of the interfering
UE is weak, as compared to that of the desired UE, or when
the correlation matrices are sufficiently different.



4
Spectral Efficiency

In this section, we analyze the achievable UL and DL SEs, based on
the channel estimation framework developed in the previous section.
Expressions for the SE in the UL are derived in Section 4.1. Different
receive combining schemes are evaluated and the impacts of spatial
channel correlation and pilot contamination are revisited. In Section 4.3,
achievable SE expressions for the DL are derived with different DL
channel estimation schemes. The key differences and similarities be-
tween the UL and DL expressions are described and the performance
of different precoding schemes is evaluated. The asymptotic behavior
of the SE, when the number of BS antennas grows infinitely large,
is considered in Section 4.4. The key points are summarized in Sec-
tion 4.5.

4.1 Uplink Spectral Efficiency and Receive Combining

We will now study the achievable SE of the UL payload data transmission
with different receive combining schemes. Each BS detects the desired
signals by using linear receive combining. Recall that UE k in cell j
transmits a random data signal sjk ∼ NC(0, pjk) for j = 1, . . . , L and

275
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k = 1, . . . ,Kj . The variance pjk is the transmit power (i.e., the average
energy per sample).

The receiving BS j selects the combining vector vjk ∈ CMj for its
kth UE, as a function of the channel estimates obtained from the pilot
transmission. The combining vector should depend on ĥjjk, in order to
coherently combine the desired signal components received over the Mj

antennas, but it can also depend on the estimates of other channels,
if the BS wishes to suppress interference (from the own and/or other
cells). During data transmission, BS j correlates the received signal yj
from (2.5) with the combining vector to obtain

vH
jkyj = vH

jkĥ
j
jksjk︸ ︷︷ ︸

Desired signal over estimated channel

+ vH
jkh̃

j
jksjk︸ ︷︷ ︸

Desired signal over unknown channel

+
Kj∑

i=1
i 6=k

vH
jkh

j
jisji

︸ ︷︷ ︸
Intra-cell interference

+
L∑

l=1
l 6=j

Kl∑

i=1
vH
jkh

j
lisli

︸ ︷︷ ︸
Inter-cell interference

+ vH
jknj

︸ ︷︷ ︸
Noise

. (4.1)

A similar expression was given in (2.6), but the key difference in (4.1)
is that the desired signal term has been divided into two parts: one
that is received over the known estimated channel ĥjjk from UE k in
the cell and one that is received over the unknown estimation error h̃jjk
of the channel. The former part can be utilized straight away for signal
detection, while the latter part is less useful since only the distribution
of the estimation error is known (see Corollary 3.2 on p. 250). The SE
in Massive MIMO is generally computed by treating the latter part as
additional interference in the signal detection, by utilizing Corollary 1.3
on p. 171. In doing so, we obtain the following result.

Theorem 4.1. If MMSE channel estimation is used, then the UL ergodic
channel capacity of UE k in cell j is lower bounded by SEUL

jk [bit/s/Hz]
given by

SEUL
jk = τu

τc
E
{

log2
(
1 + SINRUL

jk

)}
(4.2)
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with

SINRUL
jk =

pjk|vH
jkĥ

j
jk|2

L∑
l=1

Kl∑
i=1

(l,i)6=(j,k)

pli|vH
jkĥ

j
li|2 + vH

jk

(
L∑
l=1

Kl∑
i=1

pliCj
li + σ2

ULIMj

)
vjk

(4.3)
and where the expectation is with respect to the channel estimates.

Proof. The proof is available in Appendix C.3.1 on p. 593.

The capacity lower bound in Theorem 4.1 represents an achievable
SE for the UL. Later in this section, we will provide an alternative lower
bound, which is less tight but commonly used in research papers since it
can lead to closed-form expressions. We refer to SINRUL

jk in (4.3) as the
UL instantaneous SINR since it appears as τu

τc
E{log2(1 + SINRUL

jk )} in
the SE expression. However, it is not an SINR in the conventional sense,
because it involves both instantaneous channel estimates and averages
over channel estimation errors—this implies that we cannot measure
SINRUL

jk in a given coherence block. Note that SINRUL
jk is a random

variable that takes a new independent realization in each coherence
block. The pre-log factor τu

τc
in (4.2) is the fraction of samples per

coherence block that are used for UL data. Since τu = τc − τp − τd, the
pre-log factor increases if we shorten the length τp of the pilot sequences
(i.e., reduce the pilot overhead) and/or reduce the number of samples
τd used for DL data.

The SE expression provided in Theorem 4.1 holds for any choice of
the receive combining vector, under the assumption that the MMSE
estimator is used for channel estimation. MR combining with vjk =
ĥjjk is commonly considered in the Massive MIMO literature, often
motivated by asymptotic arguments that only apply for uncorrelated
Rayleigh fading channels with very many antennas [208, 49]. We will
show in Section 4.4 that MR is generally not asymptotically optimal.
For this reason, we will not assume the use of MR here. Instead, we
will optimize the combining vector and compare the result with MR
and other alternative schemes. Note that SINRUL

jk only depends on
vjk, thus each combining vector can be tailored to its associated UE
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without taking the SE achieved by other UEs into account. The following
corollary finds the “optimal” receive combining vector, in the sense of
maximizing the SE expression provided in Theorem 4.1.

Corollary 4.2. The instantaneous UL SINR in (4.3) for UE k in cell j
is maximized by the multicell minimum mean-squared error (M-MMSE)
combining vector

vjk = pjk




L∑

l=1

Kl∑

i=1
pli
(
ĥjli(ĥ

j
li)

H + Cj
li

)
+ σ2

ULIMj



−1

ĥjjk (4.4)

which leads to

SINRUL
jk =

pjk(ĥjjk)
H




L∑

l=1

Kl∑

i=1
(l,i) 6=(j,k)

pliĥjli(ĥ
j
li)

H +
L∑

l=1

Kl∑

i=1
pliCj

li + σ2
ULIMj




−1

ĥjjk.

(4.5)

Proof. The proof is available in Appendix C.3.2 on p. 594.

We mentioned M-MMSE receive combining already in (1.42), but
Corollary 4.2 derives its expression for the practical case when only the
estimated channels are known. It is called M-MMSE combining since
(4.4) not only maximizes the instantaneous SINR but also minimizes
the MSE in the data detection; that is, the average squared distance
between the desired signal and the processed received signal.

Corollary 4.3. The M-MMSE combining vector in (4.4) is the vector
vjk that minimizes the conditional MSE

E
{
|sjk − vH

jkyj |2
∣∣{ĥjli}

}
(4.6)

where the expectation is conditioned on the current set {ĥjli} of all
channel estimate realizations (for l = 1, . . . , L and i = 1, . . . ,Kl).

Proof. The proof is available in Appendix C.3.3 on p. 595.
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Note that the combining vector in (4.4) is the only one that minimizes
the MSE, while the instantaneous SINR in (4.3) does not change if we
multiply vjk with an arbitrary non-zero scalar (i.e., we can normalize
the vector arbitrarily). The latter can be seen as an artifact from the
mutual information definition, which disregards non-destructive signal
processing because it does not reduce the information content. For
practical discrete signal constellations, such as QAM, the scaling is
important in the detection; the received signals are equalized to match
the given decision regions for the constellation. M-MMSE combining for
Massive MIMO has previously been studied in [246, 134, 193, 43, 239].

The structure of M-MMSE combining is quite intuitive. The matrix
that is inverted in (4.4) is the conditional correlation matrix Cyj =
E{yjyH

j | {ĥjli}} of the received signal in (4.1), given the current set of
channel estimates. The multiplication C−1/2

yj yj corresponds to whitening
of the received signal; that is, E{C−1/2

yj yj(C−1/2
yj yj)H | {ĥjli}} = IM . The

whitened received signal has spatially uncorrelated elements, which
means that the total received power is equally strong in all directions.
If we denote the whitened combining vector as ujk, it is related to the
original combining vector as vjk = C−1/2

yj ujk. The highest desired signal
power is now received from the spatial direction C−1/2

yj ĥjjk and due
to the whitening, which makes the total power equal in all directions,
the interference plus noise power is lowest in this direction. Hence, the
optimal whitened combining vector can be selected as ujk = C−1/2

yj ĥjjk.
This results into vjk = C−1/2

yj ujk = C−1
yj ĥjjk, which is equal to (4.4) up

to a scaling factor. In other words, M-MMSE combining is obtained
by whitening followed by MR combining. The whitening process is
illustrated in Figures 4.1 and 4.2, where we observe that the choice of
combining vector clearly affects the powers of the desired and interfering
signals. The M-MMSE combining vector is easily identified from the
whitened signal, while this is not the case when inspecting the original
signal.

The “multicell” notion is not strictly necessary in the name M-
MMSE, but we will use it to differentiate the true MMSE combining in
(4.4) from the single-cell variant described in Section 4.1.1.
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vH
jkCyj vjk

Total received signal

Interference
and noise

|vH
jkĥj

jk|2
Desired signal

M-MMSE

90◦

0◦180◦

270◦

45◦135◦

225◦ 315◦

Figure 4.1: The total received signal power vH
jkC−1

yj
vjk depends on the combining

vector vjk. It is shown in this figure as the distance from the origin for different
angles of a unit-norm combining vector, assuming M = 2 and that all vectors are
real-valued. The total received power is divided into desired signal power |vH

jkĥjjk|
2

and interference plus noise power vH
jkC−1

yj
vjk − |vH

jkĥjjk|
2. M-MMSE combining finds

a non-trivial tradeoff between high signal power and low interference/noise, which
maximizes the instantaneous SINR.

By defining the diagonal matrix Pl = diag(pl1, . . . , plKl) ∈ RKl×Kl
with the transmit powers of all UEs in cell l, we can collect the M-MMSE
combining vectors for all UEs in cell j in a compact matrix form:

VM-MMSE
j =

[
vj1 . . . vjKj

]

=




L∑

l=1
Ĥj
lPl(Ĥj

l )
H +

L∑

l=1

Kl∑

i=1
pliCj

li + σ2
ULIMj



−1

Ĥj
jPj

(4.7)

where Ĥj
l was defined in (3.12) as a matrix containing the estimates of

all channels from UEs in cell l to BS j.
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uH
jkujk

Total received signal

Interference
and noise

|uH
jk ĥj

jk|2C−1/2
yj

Desired signalM-MMSE

90◦

0◦180◦

270◦

45◦135◦

225◦ 315◦

Figure 4.2: This figure continues the example from Figure 4.1. It shows how the
total received signal power uH

jkujk of the whitened signal depends on the combining
vector ujk = C1/2

yj vjk. The total received power is divided into desired signal
power |uH

jkC−1/2
yj ĥjjk|

2 and interference plus noise power uH
jkujk − |uH

jkC−1/2
yj ĥjjk|

2.
M-MMSE combining jointly maximizes the desired signal power and minimizes the
interference/noise of the whitened signal.

4.1.1 Alternative Receive Combining Schemes

Although M-MMSE combining is optimal, it is not so frequently used
in the research literature. There are several reasons for this. One is
the high computational complexity of computing the Mj ×Mj matrix
inverse in (4.7) when Mj is large. The complexity is also affected by
the need to estimate the channels and acquiring the channel statistics
of all UEs. Another reason is that the performance of M-MMSE is hard
to analyze mathematically, while there are alternative schemes that can
give more insightful closed-form SE expressions. A third reason is that
receive combining schemes often are developed for single-cell scenarios
and then applied heuristically in multicell scenarios.
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We will now present the alternative receive combining schemes that
are most common in the literature and explain how these are obtained
as simplifications of M-MMSE combining. The alternative schemes are
generally suboptimal and the conditions under which they are nearly
optimal are generally not satisfied in practice. Hence, the alternative
schemes provide lower SEs but are practically useful to reduce the
computational complexity and/or the amount of channel estimates and
channel statistics that are needed to compute the combining matrix Vj .

If BS j only estimates the channels from its own UEs [148, 135,
184], we obtain the single-cell minimum mean-squared error (S-MMSE)
combining scheme with1

VS-MMSE
j

=


Ĥj

jPj(Ĥj
j)H +

Kj∑

i=1
pjiCj

ji +
L∑

l=1
l 6=j

Kl∑

i=1
pliRj

li + σ2
ULIMj




−1

Ĥj
jPj .

(4.8)

This combining matrix is obtained from (4.7) by replacing the term
Ĥj
lPl(Ĥj

l )H+∑Kl
i=1 pliC

j
li with its average E{Ĥj

lPl(Ĥj
l )H+∑Kl

i=1 pliC
j
li} =∑Kl

i=1 pliR
j
li for all l 6= j, using Corollary 3.2 on p. 250. This scheme

coincides with M-MMSE when there is only one isolated cell, but is
generally different and has a substantially weaker ability to suppress
interference from interfering UEs in other cells. This can be a major
drawback since a few strong interfering UEs in other cells might be
located near the cell edge and thus cause as much interference as the
intra-cell UEs.

If the channel conditions are good and the interfering signals from
other cells are weak, we can neglect all the correlation matrices in (4.8)

1Strictly speaking, if there is no pilot contamination, S-MMSE minimizes the MSE
E
{
|sjk − vH

jkyj |2
∣∣{ĥjji}

}
given only the set {ĥjji} of intra-cell channel estimates.
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and obtain

VRZF
j =

(
Ĥj
jPj(Ĥj

j)H + σ2
ULIMj

)−1
Ĥj
jPj

= Ĥj
jP

1
2
j

(
P

1
2
j (Ĥj

j)HĤj
jP

1
2
j + σ2

ULIKj
)−1

P
1
2
j

= Ĥj
j

(
(Ĥj

j)HĤj
j + σ2

ULP−1
j

)−1
(4.9)

where the second equality follows from the first matrix identity in
Lemma B.5 on p. 560. We call this regularized zero-forcing (RZF) com-
bining. The main benefit over S-MMSE is that a Kj ×Kj matrix is
inverted in (4.9) instead of an Mj ×Mj matrix, which can substantially
reduce the complexity sinceMj � Kj is typical in Massive MIMO. This
benefit comes with a SE loss since, in general, the channel conditions
will not be good to every UE and the interfering signals from other cells
are non-negligible. The regularization terminology refers to the fact that
(4.9) is a pseudo-inverse of the estimated channel matrix Ĥj

j where the
matrix that is inverted has been regularized by the diagonal matrix
σ2

ULP−1
j . Regularization, a classic signal processing technique, improves

the numerical stability of an inverse. In our case, it provides weighting
between interference suppression (for small regularization terms) and
maximizing the desired signals (for large regularization terms).

The combining expression in (4.9) can be further approximated when
the SNR is high, in the sense that the regularization term σ2

ULP−1
j →

0IKj . The same approximation can be applied in the regime of many
antennas where (Ĥj

j)HĤj
j + σ2

ULP−1
j ≈ (Ĥj

j)HĤj
j since the diagonal

of (Ĥj
j)HĤj

j increases with Mj while the regularization term remains
constant. In both cases, we can neglect the regularization term and
obtain the zero-forcing (ZF) combining matrix

VZF
j = Ĥj

j

(
(Ĥj

j)HĤj
j

)−1 (4.10)

which is the pseudo-inverse of (Ĥj
j)H. If we compute (Ĥj

j)HVj for any
combining scheme, the kth diagonal matrix is the desired signal gain of
the kth UE in cell j and the (k, i)th element represents the interference
that UE k causes to UE i in the same cell (for k 6= i). The combining vec-
tor in (4.10) is called ZF because (Ĥj

j)HVZF
j = (Ĥj

j)HĤj
j((Ĥ

j
j)HĤj

j)−1 =
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IKj which implies that (on average) all the interference from intra-cell
UEs is canceled, while the desired signals remain non-zero. Since the
true channel matrix is Hj

j and not Ĥj
j , there will be residual interference

also with ZF. Note that VZF
j only exists if the Kj×Kj matrix (Ĥj

j)HĤj
j

has full rank, which is typically the case whenMj ≥ Kj . Since not every
UE exhibits a high SNR in practice, it is expected that ZF will provide
lower SEs than RZF.

In low SNR conditions, we instead have (Ĥj
j)HĤj

j + σ2
ULP−1

j ≈
σ2

ULP−1
j and RZF in (4.9) is approximately equal to 1

σ2
UL

Ĥj
jPj . If we

further remove the diagonal matrix 1
σ2

UL
Pj (recall that the normalization

of a combining vector does not affect the instantaneous UL SINR), we
obtain

VMR
j = Ĥj

j (4.11)

which is known as MR combining. This scheme was considered already
in Section 1, but the main difference is that we now use estimated
channels instead of the exact ones (which are unknown in practice).
Note that MR does not require any matrix inversion, in contrast to the
previously mentioned schemes. Since not every UE exhibits a low SNR
in practice, it is expected that MR will provide lower SEs than RZF.

4.1.2 Computational Complexity of Receive Combining

The computational complexity of the aforementioned receive combining
schemes can be evaluated in detail using the framework provided in
Appendix B.1.1 on p. 558. The basic complexity in the signal reception
comes from computing vH

jkyj for every received UL signal yj and every
UE in the cell. This complexity is the same for every combining scheme.
Each inner product requires Mj complex multiplications, which gives a
total of τuMjKj complex multiplications per coherence block.

In addition, we need to account for the complexity of computing
the combining matrix Vj once per coherence block. The combining
schemes in (4.7)–(4.11) are all computed using elementary matrix op-
erations, such as matrix-matrix multiplication and matrix inversion.
The computational complexity can be computed using the framework
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described in Appendix B.1.1 on p. 558, where it is concluded that
complex multiplications and divisions dominate the complexity, while
additions and subtractions can be neglected. Table 4.1 summarizes the
total complexity of each combining scheme, using Lemmas B.1 and
B.2 on p. 559.2 In these computations, it has been assumed that the
intra-cell channel estimates Ĥj

j and the scaled estimates Ĥj
jP

1
2
l , as well

as the statistical matrices ∑Kl
i=1 pliC

j
li,
∑
l 6=j
∑Kl
i=1 pliR

j
li, and σ2

ULIMj

are available for free at BS j. This is because the complexity of the
channel estimation was previously quantified in Table 3.1. However,
since M-MMSE is the only scheme that utilizes the inter-cell channel
estimates Ĥj

l , for l 6= j, we have included the complexity of computing
these estimates in Table 4.1. This is the reason that the complexity of
M-MMSE depends on which estimator that is used.

The key benefit of using another combining scheme than “optimal”
M-MMSE is the reduced computational complexity. Figure 4.3 illus-
trates the number of complex multiplications per coherence block as a
function of either the number of UEs or the number of BS antennas. We
consider a scenario with L = 9 cells and τu = 200−K samples for data
transmissions. In particular, in Figure 4.3a we assume that K ∈ [1, 40]
and M = 100 in every cell (i.e., Kj = K and Mj = M for j = 1, . . . , L).
On the other hand, in Figure 4.3b we consider K = 10 and let M vary
from 10 to 100. Note that the vertical axes use a logarithmic scale. The
complexity increases with the number of UEs and BSs antennas for
all combining schemes. M-MMSE has clearly the highest complexity,
followed by S-MMSE. As shown in Figure 4.3a, the use of S-MMSE
reduces the complexity by 10%–50% over M-MMSE, since the inter-cell
channel estimates are not utilized in the computation. The complex-
ity reduction for K = 10 is 17%–37%, as illustrated in Figure 4.3b.
RZF and ZF provide even lower complexity since these schemes invert

2MR combining, as defined in (4.11), is given directly from the channel estimates,
without the need for any further multiplications or divisions. However, in practical
implementations, we typically normalize the combining vector such that the factor
vH
jkhjjk in front of the desired signal sjk is close to one (or another constant). The

complexity of this normalization is accounted for byKj complex divisions in Table 4.1.
The other combining schemes considered in this section provides this normalization
automatically.
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Figure 4.3: Number of complex multiplications per coherence block when using
different combining schemes. The computation of combining matrices and the inner
products with received signals are both accounted for.
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Scheme Reception Computing combining vectors
Multiplic. Multiplic. Div.

M-MMSE
(MMSE est.) τuMjKj

L∑
l=1

(3M2
j +Mj)Kl

2 + M3
j−Mj

3 Mj

+Mjτp(τp −Kj)

M-MMSE
(EW-MMSE est.) τuMjKj

L∑
l=1

(M2
j +3Mj)Kl

2 + (M2
j −Mj)Kj

Mj

+M3
j−Mj

3 +Mjτp(τp −Kj)
S-MMSE τuMjKj

3M2
jKj
2 + MjKj

2 + M3
j−Mj

3 Mj

RZF τuMjKj
3K2

jMj

2 + 3KjMj

2 + K3
j−Kj

3 Kj

ZF τuMjKj
3K2

jMj

2 + KjMj

2 + K3
j−Kj

3 Kj

MR τuMjKj – Kj

Table 4.1: Computational complexity per coherence block of different receive
combining schemes. Only complex multiplications (Multiplic.) and complex divisions
(Div.) are considered, while additions/subtractions are neglected; see Appendix B.1.1
on p. 558 for details.

substantially smaller Kj × Kj matrices (compared to the Mj × Mj

matrices that are inverted by M-MMSE and S-MMSE). As it follows
from Figure 4.3a, this property reduces the complexity by 72%–95% as
compared to M-MMSE. Finally, MR provides the lowest computational
complexity since no matrix inverses are computed, which also means
that all computations can be parallelized in the implementation (a sepa-
rate processing core can be used per antenna and UE). The complexity
reduction compared to RZF and ZF, in number of multiplications, is
only substantial when the number of UEs is large; Figure 4.3a shows
that with K = 10, we only save 8% in complexity by using MR instead
of RZF.

The price to pay for reduced complexity is a reduction in SE. Before
illustrating the performance-complexity tradeoff, we will define a simu-
lation scenario that will be repeatedly used throughout the monograph.
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Parameter Value
Network layout Square pattern (wrap-around)
Number of cells L = 16

Cell area 0.25 km × 0.25 km
Number of antennas per BS M

Number of UEs per cell K

Channel gain at 1 km Υ = −148.1 dB
Pathloss exponent α = 3.76

Shadow fading (standard deviation) σsf = 10
Bandwidth B = 20MHz

Receiver noise power −94 dBm
UL transmit power 20dBm
DL transmit power 20dBm

Samples per coherence block τc = 200
Pilot reuse factor f = 1, 2 or 4

Number of UL pilot sequences τp = fK

Table 4.2: System parameters of the running example. Each cell covers a square area
of 0.25 km × 0.25 km and is deployed on a grid of 4×4 cells. A wrap-around topology
is used, as illustrated in Figure 4.4. The UEs are uniformly and independently
distributed in each cell, at distances larger than 35m from the BS.

4.1.3 Definition of the Running Example

To exemplify the performance of Massive MIMO under somewhat real-
istic conditions, we will now define a 16-cell setup that will be used as a
running example in the remainder of Section 4 and also in later sections.
The key parameters are given in Table 4.2 and explained below. The
purpose of the simulation examples is to qualitatively describe the basic
phenomena and characteristics of Massive MIMO and to enable direct
comparison between different simulation results. However, most simula-
tions are based on rather simple channel models and power allocation
schemes, so we cannot draw general quantitative conclusions. Optimized
power allocation is considered in Section 7.1 on p. 452 and a case
study using a realistic channel model and optimized power allocation is
provided in Section 7.7 on p. 537.
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In the running example, each cell covers a square of 0.25 km× 0.25 km
and is deployed on a square grid of 4×4 cells.3 A wrap-around topology
is used to simulate that all BSs receive equally much interference from
all directions; see Figure 4.4 for an illustration. More precisely, for each
combination of UE and BS, we consider eight alternative locations of the
BS and determine which one has the shortest distance to the UE. Only
this location is used when computing the large-scale fading and nominal
angle between the UE and BS. The large-scale fading model in (2.3) is
used with the median channel gain Υ = −148.1dB at 1 km, α = 3.76
as the pathloss exponent, and σsf = 10 as the standard deviation of the
shadow fading. These propagation parameters are inspired by the NLoS
macro cell 3GPP model for 2GHz carriers, which are described in [119,
A.2.1.1.2-3]. The UEs are uniformly and independently distributed in
each cell, at distances larger than 35m from the BS.4

We consider communication over a 20MHz bandwidth with a total
receiver noise power of −94dBm (consisting of thermal noise and a
noise figure of 7 dB in the receiver hardware). Unless stated otherwise,
we consider a UL transmit power of 20 dBm per UE and, when needed,
each BS allocates 20 dBm of DL transmit power per UE. With these
parameters, the median SNR of a UE at 35m from its serving BS is
20.6 dB, while a UE in any of the corners of a square cell gets −5.8 dB.
Note that the median removes the impact of the shadow fading, thus
larger SNR variations are obtained in the simulations.

Two Rayleigh fading channel models with different spatial charac-
teristics will be used along with the running example:

• Gaussian local scattering with ASD σϕ: The spatial corre-
lation matrices are generated using the local scattering model,

3Practical BSs are not deployed in such a regular pattern, but rather seem
stochastically deployed [18, 200] because many external constraints affect the de-
ployment. However, when studying the achievable performance of a network, it is
common practice to consider an easily reproducible regular deployment.

4Due to the random shadow fading, it can happen that a UE gets a better channel
to another BS than the one in its own square. In practice, such a UE may exploit this
macro-diversity to connect to the other BS. In the running example, we disregard
these situations by only considering collections of shadow fading realizations for UE
k in cell j for which βjjk ≥ β

l
jk for l = 1, . . . , L. This makes sure that the UE connects

to the BS in its own square, while retaining macro-diversity towards shadowing.
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Figure 4.4: Illustration of the running example. 16 square cells are located on a
4× 4 grid. (a) A wrap-around topology is considered where each cell has multiple
locations and the distance between any arbitrary UE and arbitrary BS is always the
shortest among all nine combinations. The angular properties are extracted from the
shortest path. (b) Four different ways to reuse pilot sequences across the cells are
shown, where a larger pilot reuse factor implies that more orthogonal pilot sequences
are required.



4.1. Uplink Spectral Efficiency and Receive Combining 291

defined in (2.23). The nominal angles are computed as the LoS
angles between the UEs and the BSs. The angular distribution
around the nominal angle is Gaussian with zero mean and stan-
dard deviation σϕ, whose value is specified each time we use this
model.

• Uncorrelated fading: The spatial correlation matrices are gen-
erated as Rj

li = βjliIMj for l, j = 1, . . . , L and i = 1, . . . ,Kl.

The former model provides strong spatial channel correlation, while the
latter provides no spatial channel correlation.

Each coherence block consists of τc = 200 samples. This dimen-
sionality supports high mobility and large channel dispersion at 2GHz
carriers, as exemplified in Remark 2.1 on p. 221.

There are M antennas at each BS and, in most cases, an equal
number K of UEs in each cell. The values of M and K will be changed
and specified every time we consider the running example.

The τp pilot sequences can be distributed among the UEs and reused
across cells in different ways, as described in detail in Section 7.2.1 on
p. 468. Unless stated otherwise, we consider τp = fK pilots, with the
integer f being called the pilot reuse factor. This means that there are
f times more pilots than UEs per cell and the same subset of pilots is
reused in a fraction 1/f of the cells. We consider f ∈ {1, 2, 4} in the
running example and the corresponding reuse patterns are illustrated in
Figure 4.4b. The cells that use the same pilots are said to belong to the
same pilot group. The pilots are randomly assigned to the UEs in every
cell in the sense that the kth UE in two cells, that belong to the same
pilot group, uses the same pilot. All parameter values are summarized
in Table 4.2.

Remark 4.1 (LTE comparison). To make comparisons with contempo-
rary cellular networks, we consider a typical LTE system where each
cell is equipped with four antennas and has a coverage area of 3

√
3

2 0.252

km2. We refer the interested reader to [110] for more details on the
cell configuration in LTE. The total DL transmit power of the cell is
46 dBm and two single-antenna UEs are served by multiuser MIMO. For
a TDD system [112], the UL and DL SEs are 2.8 and 3.2 bit/s/Hz/cell,
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respectively. If there is 100% of UL or DL traffic over a 20MHz band-
width, this corresponds to a UL throughput of 56Mbit/s/cell or to a
DL throughput of 64Mbit/s/cell, which result into UL and DL area
throughputs of 344Mbit/s/km2 and 394Mbit/s/km2, respectively.

4.1.4 SE Comparison of Different Combining Schemes

We will now compare the different receive combining schemes using the
setup defined in the running example above. The following Monte Carlo
methodology is used to generate simulation results:

1. Macroscopic propagation effects

(a) Randomly drop UEs in each cell
(b) Compute distances djlk and nominal angles ϕjlk
(c) Generate random shadow fading coefficients F jlk
(d) Compute average channel gains βjlk, spatial correlation ma-

trices Rj
lk, and estimation error correlation matrices Cj

lk

2. Microscopic propagation effects

(a) Generate random estimated channel vectors ĥjlk
3. SE computation

(a) Compute receive combining vectors vjk and resulting SINRUL
jk

(b) Compute “instantaneous” SE:

SEUL,inst.
jk = τu

τc
log2

(
1 + SINRUL

jk

)

(c) Average SEUL,inst.
jk over estimated channels to obtain SEUL

jk

(d) Obtain simulation results by considering the SEs of all UEs
for different shadow fading realizations and UE locations

In this simulation, we consider K = 10 UEs per cell and a varying
number of BS antennas. There are fK pilots in each coherence block
and the remaining τc − fK samples are used for UL data transmission.
We use Gaussian local scattering with ASD σϕ = 10◦ as channel model.
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Figure 4.5: Average UL sum SE as a function of the number of BS antennas for
different combining schemes. There are K = 10 UEs per cell and the same K pilots
are reused in every cell.

Figure 4.5 shows the average UL sum SE as a function of the
number of BS antennas for universal pilot reuse with f = 1. M-MMSE
gives the largest SE in Figure 4.5. The SE reduces a little with every
approximation that is made to obtain a scheme with lower complexity
than M-MMSE. The S-MMSE scheme provides lower SE than M-MMSE,
but 5%–10% higher SE than RZF and ZF. Note that RZF and ZF
give essentially the same SE in the range M ≥ 20 that is of main
interest in Massive MIMO, but the SE with ZF deteriorates quickly
for M < 20 since the BS does not have enough degrees of freedom to
cancel the interference without also canceling a large part of the desired
signal. Hence, ZF should be avoided to achieve a robust implementation.
Interestingly, MR provides only half the SE of the other schemes, but
looking at Figure 4.3 we know that it also reduces complexity by 10%
as compared to RZF and requires no matrix inversions.

Figure 4.6 shows the average sum SE with a non-universal pilot
reuse f . In particular, we consider cases where each pilot is reused
in every second or fourth cells, according to the pattern shown in
Figure 4.4b. This is referred to as having a pilot reuse factor of f = 2
and f = 4, respectively. The increased number of pilots reduces the
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(a) Pilot reuse factor f = 2.
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(b) Pilot reuse factor f = 4.

Figure 4.6: Average UL sum SE as a function of the number of BS antennas for
different combining schemes. There are K = 10 UEs per cell and either 2K or 4K
pilots that are reused across cells according to the pattern in Figure 4.4b.
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Scheme f = 1 f = 2 f = 4
M-MMSE 50.32 55.10 55.41
S-MMSE 45.39 45.83 42.41
RZF 42.83 43.37 39.99
ZF 42.80 43.34 39.97
MR 25.25 24.41 21.95

Table 4.3: Average UL sum SE [bit/s/Hz/cell] forM = 100 and K = 10 for different
pilot reuse factors f . The largest value for each scheme is in bold face. The results
are summarized from Figures 4.5 and 4.6.

pre-log factor in (4.2) since τu = τc − fK, but it also increases the
instantaneous SINR in (4.3) since better channel estimates with less
pilot contamination are obtained. M-MMSE benefits particularly much
from having f > 1, because it can better suppress the interference
from UEs in the surrounding cells when these UEs use other pilots. A
reuse factor of 4 gives the highest SE with M-MMSE. S-MMSE, RZF,
and ZF give comparable SE to each other for all f , and achieve the
highest SE with f = 2. The SE of MR reduces when f is increased
since the improved estimation quality does not outweigh the reduced
pre-log factor when the estimate is only used to coherently combine
the desired signal and not to cancel interference. These properties are
quantified in Table 4.3, which summarizes the sum SE of all schemes
with M = 100 and different f . The numbers can be compared with
the SE 2.8 bit/s/Hz/cell achieved by a contemporary LTE system (see
Remark 4.1). With all pilot reuse factors, M-MMSE and RZF provide
more than an order-of-magnitude higher SE per cell. With MR, the
gain is a factor 7–9.

In summary, there are basically three combining schemes to choose
from, if the running example is implemented in practice. M-MMSE
provides the highest SE using the highest complexity, and should be
implemented using non-universal pilot reuse. MR has the lowest com-
plexity, but also delivers the lowest SE. Finally, RZF strikes a good
balance between SE and complexity; it can double the SE as compared
to MR while the computational complexity is only some tens of per-
centages higher. In practice, RZF is always a better choice than ZF,
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since it achieves similar or better SE and lacks ZF’s robustness issues
when M ≈ K. However, ZF is a fairly common scheme in the literature
since it allows to compute closed-form SE expressions in the special
case of spatially uncorrelated channels [244, 357, 210]. Approximate
closed-form expressions can be computed with M-MMSE, S-MMSE,
and RZF [148, 193]. The closed-form expressions predict the SE that is
practically achievable with different schemes and are particularly useful
for resource allocation and optimization.

Remark 4.2 (Polynomial expansion). The ultimate receive combining
scheme would provide the SE of M-MMSE or RZF, but would have
a computational complexity similar to that of MR. Since the matrix
inversions in M-MMSE and RZF are particularly computationally heavy,
one way to reduce the complexity is to approximate the inversion by a
matrix polynomial [229]. Note that for a real scalar a we can make the
Taylor series expansion (1 + a)−1 = ∑∞

`=0(−a)` if |a| < 1. Similarly, we
have (IN +A)−1 = ∑∞

`=0(−A)` if A is an N×N Hermitian matrix with
eigenvalues λ1, . . . , λN that all satisfy |λn| < 1. The intuition is that
(IN + A)−1 keeps the eigenvectors of IN + A (which coincide with those
of A) but inverts all the eigenvalues as (1 + λn)−1, thus we can apply
the Taylor expansion separately to the inversion of each eigenvalue.
By truncating the polynomial expansion to only the first Lp terms,
which have the dominant impact in a Taylor series, we can obtain an
efficient approximation that does not involve any matrix inversion. This
technique has been considered for various multiuser detection scenarios
in the last decades [229, 190, 145, 233, 292, 149]. Weighted truncations
of the form ∑Lp

`=0 υ`A`, for scalar weights υ`, are often considered to
fine-tune the approximation. The weights can be computed using scaling
properties [190, 292, 170] or asymptotic random matrix analysis [233,
149, 302]. A key benefit of the polynomial expansion technique is that
it allows for efficient multistage/pipelined hardware implementation
[229]. The computational complexity is proportional to LpN2, where
N = Mj with M-MMSE and N = Kj with RZF. Note that Lp does not
need to scale with N since each of the N eigenvalues is approximated
separately. Instead, Lp can be selected to balance between computational
complexity and communication performance. Polynomial expansion in



4.1. Uplink Spectral Efficiency and Receive Combining 297

UL Massive MIMO was studied in [149], where Lp = 1 coincides with
MR and every additional term gives an improvement towards the SE
with RZF. There is also a related concept of Neumann series expansions
that can be used to approximate matrix inverses [352].

4.1.5 Impact of Spatial Channel Correlation

We know that spatial channel correlation has a major impact on channel
hardening, favorable propagation, and channel estimation quality (see
Figures 2.7, 2.8, and 3.3). On the positive side, we have observed that
the estimation quality improves under spatial correlation and that UEs
with different spatial characteristics exhibit more favorable propaga-
tion. On the negative side, we have observed a slower convergence to
asymptotic channel hardening under spatial correlation and also less
favorable propagation for UEs with similar spatial characteristics. We
will now quantify the impact of spatial channel correlation on the SE
by continuing the running example that was defined in Section 4.1.3.
We use the Gaussian local scattering channel model with varying ASD
σϕ and will compare the results with uncorrelated fading. Based on
the conclusion from the SE-complexity tradeoff analysis above, we only
consider M-MMSE, RZF, and MR combining, which represent three
distinctively different tradeoffs. We consider M = 100 and K = 10, and
for each scheme and σϕ, we use the pilot reuse factor that maximizes
the SE. Apart from the pilots, the remaining τc − fK = 200 − 10f
samples per coherence block are used for UL data transmission. The
SEs are computed using Theorem 4.1.

Figure 4.7 shows the average sum SE as a function of the ASD. As
expected, M-MMSE provides the highest SE, followed by RZF, and
then MR. We notice that the SE is a decreasing function of the ASD, for
all three combining schemes. This indicates that the dominant effect of
having high spatial channel correlation (i.e., small ASD) is the reduced
interference caused between UEs that have sufficiently different spatial
correlation matrices. For very small ASDs, the channel resembles a
LoS scenario and we then know from Section 1.3.3 on p. 193 that the
interference is low, except when two UEs have very similar angles to a BS.

The figure also shows dotted lines that represent the SE achieved
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Figure 4.7: Average UL sum SE for the running example using the Gaussian local
scattering channel model with varying ASD. We consider M = 100 and K = 10. The
dotted lines indicate the SE achieved with uncorrelated Rayleigh fading channels.
The largest SE is achieved by M-MMSE, followed by RZF, and then MR.

with uncorrelated Rayleigh fading channels, as defined in the running
example. The combining schemes provide SEs in the same performance
order as with spatial channel correlation. Spatially correlated channels
provide higher average SEs for most ASDs; for example, M-MMSE
benefits from spatial correlation if the ASD is below 50◦, while MR
and RZF perform better for ASDs smaller than 20◦. However, for large
ASDs, the SE is slightly lower than with uncorrelated fading. This is
due to the geometry of a ULA that makes it better at resolving UE
angles near to the boresight of the array than UE angles that are nearly
parallel to the array.5

While the curves in Figure 4.7 represent the average SEs, Figure 4.8
shows CDF curves of the variations in SE per UE, for an arbitrary UE
in the network. The randomness is due to random UE locations and
shadow fading realizations. Simulation results are given for uncorrelated
Rayleigh fading channels and for the Gaussian local scattering channel

5If the random angle ϕ̄ of the scatterers is distributed such that sin(ϕ̄) is uniformly
distributed between −1 and +1, then the ULA will behave as in uncorrelated Rayleigh
fading. With the local scattering model, with essentially any angular distribution, it
is instead ϕ̄ that is uniformly distributed between −π and +π when σϕ is large.
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Figure 4.8: CDF of the UL SE per UE in the running example with M = 100,
K = 10, and f = 2. Uncorrelated Rayleigh fading channels are compared with the
Gaussian local scattering channel model with ASD σϕ = 10◦.

model with ASD σϕ = 10◦, which represents strong spatial channel
correlation. The main observation is that in situations where the spatial
correlation improves the sum SE, all UEs will statistically benefit
from a higher SE since the CDF curves with spatial correlation are to
the right of the corresponding curves with uncorrelated fading. This
does not mean that spatial correlation is always beneficial. A UE at a
given location might achieve higher SE with uncorrelated fading than
with spatial correlation, but this cannot be seen from CDF curves. By
investigating the simulation results further, we notice that this happens
with 17%–35% probability. However, as a UE moves around in the
network the probability of achieving a particular SE is consistently
higher under spatial correlation.

4.1.6 Channel Hardening under Spatial Channel Correlation

The effective channel after receive combining is vH
jkh

j
jk. Similar to

Definition 2.4 on p. 231, we can say that the effective channel hardens
if vH

jkh
j
jk/E{vH

jkh
j
jk} ≈ 1 for any channel realization. To quantify how

close to asymptotic channel hardening we are with a certain channel
model, receive combining scheme, and a finite number of antennas, we
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2, with different receive combining schemes and channel
models. We consider M = 100, f = 2, and K = 10. The vertical reference curves that
show the channel gain variations with M ∈ {1, 30, 100} using MR with uncorrelated
fading and perfect CSI. Note that the horizontal axis has a logarithmic scale.

can measure the variance of vH
jkh

j
jk/E{vH

jkh
j
jk}:

V{vH
jkh

j
jk}

(E{vH
jkh

j
jk})2

. (4.12)

This approach is similar to the analysis in Section 2.5.1 on p. 231 and
we note that the variance should ideally be almost zero.

Figure 4.9 shows CDFs of (4.12) in the running example, where
the randomness is induced by random UE locations. At each location,
the variance is computed numerically from many channel realizations.
We consider M = 100, K = 10, and f = 2. Results are shown for
uncorrelated fading and the Gaussian local scattering model with 10◦
ASD. There are also three vertical reference curves in Figure 4.9 that
show the variance of the channel hardening withM ∈ {1, 30, 100} using
MR, uncorrelated fading, and perfect CSI.

First, we notice that the choice of receive combining scheme (MR,
RZF, or M-MMSE) has little impact on the results, although the
interference rejection in RZF and M-MMSE leads to a small reduction
in hardening. Second, the imperfect CSI greatly impacts the hardening.
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With uncorrelated Rayleigh fading, some UEs achieve the same amount
of channel hardening as the reference case with perfect CSI and the
same number of antennas. This happens for cell-center UEs that have
high SNR and estimation quality, while the cell-edge UEs will observe
a substantial loss in hardening due to the channel estimation errors.
The local scattering model gives a similar trend, but all UEs observe
substantially less hardening; as shown in the figure, it is basically
equivalent toM = 30 with uncorrelated fading. This is not a coincidence,
but follows from the fact that only around 40% of the eigenvalues of
the spatial correlation matrix are non-negligible (see Figure 2.6 and
Section 2.5.1 on p. 231). Nevertheless, there is much more hardening
under strong spatial correlation than in a single-antenna system.

In summary, in the considered scenario, spatial channel correlation
(and also estimation errors) leads to a substantial loss in channel hard-
ening, due to the larger variations in the effective channel after receive
combining. In contrast, the choice of receive combining scheme has an
almost negligible impact on the hardening.

4.2 Alternative UL SE Expressions and Key Properties

The SE expression in Theorem 4.1 can be computed by Monte Carlo
simulations for any combining scheme, by generating many realizations
of the instantaneous SINR in (4.3). There is an alternative SE expres-
sion that may lead to closed-form expressions. The key idea behind
this approach is to utilize the channel estimates only for computing the
receive combining vectors, while this side-information is not exploited
in the signal detection. This simplification makes sense when there is
substantial channel hardening, such that vH

jkh
j
jk/Mj ≈ E{vH

jkh
j
jk}/Mj .
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More precisely, the receive combined signal in (4.1) is rewritten as

vH
jkyj = E{vH

jkh
j
jk}sjk︸ ︷︷ ︸

Desired signal over average channel

+ (vH
jkh

j
jk − E{vH

jkh
j
jk})sjk︸ ︷︷ ︸

Desired signal over “unknown” channel

+
Kj∑

i=1
i 6=k

vH
jkh

j
jisji

︸ ︷︷ ︸
Intra-cell interference

+
L∑

l=1
l 6=j

Kl∑

i=1
vH
jkh

j
lisli

︸ ︷︷ ︸
Inter-cell interference

+ vH
jknj

︸ ︷︷ ︸
Noise

(4.13)

by adding and subtracting E{vH
jkh

j
jk}sjk. Only the part of the desired

signal received over the average precoded channel E{vH
jkh

j
jk} is treated

as the true desired signal. The part of sjk received over the deviation
from the mean value, vH

jkh
j
jk − E{vH

jkh
j
jk}, has zero mean and can thus

be treated as an uncorrelated noise signal in the detection. The following
theorem provides an alternative capacity bound, which is referred to as
the use-and-then-forget (UatF) bound since the channel estimates are
used for combining and then effectively “forgotten” before the signal
detection [210].

Theorem 4.4. The UL ergodic channel capacity of UE k in cell j is
lower bounded by SEUL

jk = τu
τc

log2(1 + SINRUL
jk ) [bit/s/Hz] with

SINRUL
jk =

pjk|E{vH
jkh

j
jk}|2

L∑
l=1

Kl∑
i=1

pliE{|vH
jkh

j
li|2} − pjk|E{vH

jkh
j
jk}|2 + σ2

ULE{‖vjk‖2}
(4.14)

where the expectations are with respect to the channel realizations.

Proof. The proof is available in Appendix C.3.4 on p. 596.

The lower bound on the capacity provided by Theorem 4.4 is intu-
itively less tight than the bound provided in Theorem 4.1, since the
channel estimates are not utilized in the signal detection. However,
it does not require the use of MMSE channel estimation, but can be
applied along with any channel estimator and any combining scheme.
In fact, it can be applied with any channel distributions or even mea-
sured channels. Since the SE takes the form τu

τc
log2(1 + SINRUL

jk ), it
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is convenient to refer to SINRUL
jk as the effective SINR of the fading

channel from UE k in cell j. Note that SINRUL
jk is deterministic and the

expression contains several expectations over the random channel real-
izations. Each of the expectations in (4.14) can be computed separately
by means of Monte Carlo simulation. For MR combining, they can be
obtained in closed form.
Corollary 4.5. If MR combining with vjk = ĥjjk is used, based on the
MMSE estimator, then

E{vH
jkh

j
jk} = pjkτptr

(
Rj
jkΨ

j
jkR

j
jk

)
(4.15)

E{‖vjk‖2} = pjkτptr
(
Rj
jkΨ

j
jkR

j
jk

)
(4.16)

E{|vH
jkh

j
li|2} = pjkτptr

(
Rj
liR

j
jkΨ

j
jkR

j
jk

)

+




plipjk(τp)2

∣∣∣tr
(
Rj
liΨ

j
jkR

j
jk

)∣∣∣
2

(l, i) ∈ Pjk
0 (l, i) 6∈ Pjk

(4.17)

where Ψj
jk was defined in (3.10). The SE expression in Theorem 4.4

becomes SEUL
jk = τu

τc
log2(1 + SINRUL

jk ) with

SINRUL
jk =

p2
jkτptr

(
Rj
jkΨ

j
jkR

j
jk

)

L∑

l=1

Kl∑

i=1

plitr
(
Rj
liR

j
jkΨ

j
jkR

j
jk

)

tr
(
Rj
jkΨ

j
jkR

j
jk

)

︸ ︷︷ ︸
Non-coherent interference

+
∑

(l,i)∈Pjk\(j,k)

p2
liτp

∣∣∣tr
(
Rj
liΨ

j
jkR

j
jk

)∣∣∣
2

tr
(
Rj
jkΨ

j
jkR

j
jk

)

︸ ︷︷ ︸
Coherent interference

+σ2
UL

.

(4.18)

In the special case of spatially uncorrelated fading (i.e., Rj
li = βjliIMj

for l = 1, . . . , L and i = 1, . . . ,Kl), (4.18) simplifies to

SINRUL
jk =

(pjkβjjk)2τpψjkMj

L∑

l=1

Kl∑

i=1
pliβ

j
li

︸ ︷︷ ︸
Non-coherent interference

+
∑

(l,i)∈Pjk\(j,k)
(pliβjli)

2τpψjkMj

︸ ︷︷ ︸
Coherent interference

+σ2
UL

(4.19)
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where

ψjk =


 ∑

(l′,i′)∈Pjk
pl′i′τpβ

j
l′i′ + σ2

UL



−1

. (4.20)

Proof. The proof is available in Appendix C.3.5 on p. 597.

The closed-form SE expression in Corollary 4.5 provides important
insights into the basic behaviors of Massive MIMO. The signal term in
the numerator of (4.18) is

p2
jkτptr(R

j
jkΨ

j
jkR

j
jk) = pjktr(Rj

jk −Cj
jk) (4.21)

where the equality follows from (3.11). This is the transmit power
multiplied with the trace of the correlation matrix of the channel
estimate (see Corollary 3.2 on p. 250). Hence, the estimation quality
determines the signal strength and it is reduced by pilot contamination.
Since the trace is the sum of the Mj diagonal elements, the signal term
increases linearly with Mj , which proves that the signal is coherently
combined over theMj antennas. This array gain is explicit in the special
case of uncorrelated fading:

p2
jkτptr(R

j
jkΨ

j
jkR

j
jk) = (pjkβjjk)

2τpψjkMj . (4.22)

The denominator of (4.18) contains three terms. The first one is a
summation over all UEs in all cells, where UE i in cell l contributes
with the interference plitr(Rj

liR
j
jkΨ

j
jkR

j
jk)/tr(R

j
jkΨ

j
jkR

j
jk). This term

is referred to as non-coherent interference, because it does not increase
linearly with Mj ; this is easily seen in the special case of uncorrelated
fading when the interference term becomes pliβjli and thus is the product
between the transmit power and the average channel gain. In general, the
relation between the spatial correlation matrices Rj

li and Rj
jk determine

how large the interference terms are; the strength of the interference is
basically determined by whether tr(Rj

liR
j
jk)/tr(Rjk) is large or small.

It is small when the interfering UE is far from the receiving BS and/or
the spatial channel correlation properties are very different. The latter
can be illustrated similarly to Figure 3.4, where UE pairs with similar
angles cause more interference to each other and UEs with very different
angles cause less interference. In the extreme case of Rj

liR
j
jk = 0Mj×Mj ,
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there is no interference between the two UEs, since their channels “live”
in separate eigenspaces.

The second term in the denominator of (4.18) only involves the
UEs in Pjk \ (j, k), which are those using the same pilots as the desired
UE. This interference term contains the square of a trace term divided
by a single trace term. As explained above, each trace term increases
linearly with Mj and thus the entire interference term scales as Mj .
This is seen explicitly in the special case of uncorrelated fading when the
term becomes (pliβjli)2τpψjkMj and thus resembles the signal term, but
involves the power and average channel gain of the interfering UE. This
term is referred to as coherent interference and is a consequence of the
pilot contamination. Recall that the channel estimates are statistically
correlated for UEs that use the same pilot, as proved in Corollary 3.3 on
p. 251. When the BS uses such an estimate to coherently combine the
signal from its own UEs, it will also partially coherently combine the
interfering signals. The strength of the coherent interference depends
on the spatial correlation matrices of the desired and interfering UEs,
similar to the case of non-coherent interference.

Figure 4.10 illustrates the coherent interference power divided by the
desired signal power in the numerator of (4.18) for the same scenario as
in Figure 3.4; that is, there is one desired UE at a fixed angle of 30◦ (as
seen from the receiving BS) and an interfering UE at a varying angle
between −180◦ and 180◦. The local scattering model with Gaussian
angular distribution and ASD σϕ = 10◦ is used, while the effective SNR
from the desired UE is 10 dB and the interfering signal is 10 dB weaker
than that. Figure 4.10 shows that when the desired and interfering UEs
have similar angles, the relative interference power is independent of
M , since both the desired signal power and the interference power grow
proportionally to the number of antennas. However, when the BS can
separate the UEs spatially, the coherent interference is reduced and the
interference situation is vastly better than in a single-antenna scenario.
Hence, even with simple MR combining, the coherent interference is
not worse than in a single-antenna system and it can potentially be
much lower. This explains the simulation results in Section 4.1.5, which
indicated that spatial correlation improves the SE.
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Figure 4.10: Coherent interference power (normalized by signal power) caused to a
desired UE from an interfering UE that uses the same pilot, when MR combining
is used. The local scattering model with Gaussian angular distribution is used and
the desired UE has a nominal angle of 30◦, while the angle of the interfering UE is
varied between −180◦ and 180◦. The effective SNR from the desired UE is 10 dB
and the interfering signal is 10 dB weaker than that.

The third term in the denominator of (4.18) is the noise variance.

4.2.1 Tightness of the UatF Bound

We will compare the UatF bound in Theorem 4.4 with the original UL
capacity bound in Theorem 4.1 by continuing the running example.
We assume M = 100, K = 10, and f = 2. This simulation only
considers MR combining, since one of the primary reasons to use the
UatF bound is that one can obtain the closed-form SE expression for
MR in Corollary 4.5. That corollary considers MR combining as it
was defined in (4.11): vjk = ĥjjk. We will also evaluate MR with the
following alternative vector normalizations:

vjk = ĥjjk/‖ĥ
j
jk‖ (4.23)

and

vjk = ĥjjk/‖ĥ
j
jk‖2. (4.24)

Figure 4.11 shows the average sum SE as a function of the ASD.
The top curve is obtained from Theorem 4.1 and the bottom curve is
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Figure 4.11: Average UL sum SE as a function of the ASD, using the local scattering
model with Gaussian angular distribution. We consider M = 100, K = 10, and f = 2.
The original SE expression for MR combining is compared with the UatF expression
when the MR combining vector is normalized in three different ways.

obtained from Corollary 4.5. There is a substantial gap between these
curves, particularly for small ASDs. The reason is that the UatF bound
relies on channel hardening and less hardening occurs when the spatial
channel correlation is strong (see Section 4.1.6).6 For large ASDs, the
gap between the top and bottom curve is around 30%.

The SE should not be affected by the normalization of the combining
vector because all parts of the received signal are scaled by the same
known variable. The SE expression in Theorem 4.1 satisfies this basic
property, but the normalization can actually affect the tightness of the
UatF bound. For example, this bound is only tight when the combined
channel vH

jkh
j
jk has nearly hardened and a random normalization factor

can either improve or degrade the channel hardening effect. Figure 4.11
compares the SE from Theorem 4.1, using MR, and the UatF bound
with MR normalized as vjk = ĥjjk or as in (4.23) or (4.24). The former
option was used to compute the closed-form expression in Corollary 4.5,
but it is the normalization in (4.24) that gives the SE closest to the top

6In the extreme case when the spatial correlation matrix has rank one (e.g.,
σϕ = 0), the squared channel norm ‖h‖2 has an exponential distribution irrespective
of the number of antennas. No channel hardening occurs in this special case.
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curve (representing Theorem 4.1). The difference between the normal-
izations is particularly large for small ASDs, since there is less channel
hardening. The normalization-dependence is an artifact of the UatF
bounding technique, which “forgets” the combining vector before the
signal detection. It is important to keep this artifact in mind when using
UatF-type of bounds (as often done in the Massive MIMO literature).
The reason that the normalization ĥjjk/‖ĥ

j
jk‖2 gives the highest SE

is quite intuitive: the gain of the estimated channel is equalized as
vH
jkĥ

j
jk = (ĥjjk)Hĥjjk/‖ĥ

j
jk‖2 = 1, which ideally leads to a deterministic

channel. Note that the non-MR combining schemes considered in this
section are created by taking the channel estimate ĥjjk and multiplying
it with the inverse of a matrix that contains the outer product ĥjjk(ĥjjk)H.
This leads to a normalization of the combining vector that resembles
ĥjjk/‖ĥ

j
jk‖2 and thus we can use these combining schemes in the UatF

bound without having to change the normalization. In summary, UatF
bounds on the capacity can be convenient to obtain analytical insights
(particularly when using MR), but they may have some unexpected
behaviors, such as systematically underestimating the achievable SE.

4.2.2 Pilot Contamination and Coherent Interference

Pilot contamination has two effects on the UL. First, it increases the
MSE of the channel estimation (see Section 3.3.2 on p. 256), which
impairs the ability to select combining vectors that provide strong array
gains and that reject non-coherent interference. Second, it gives rise
to coherent interference that is amplified by the array gain, similar
to the desired signal. We will now investigate the impact and relative
importance of these effects by continuing the running example that
was defined in Section 4.1.3. We consider M = 100, K = 10, and will
compare uncorrelated fading and the Gaussian local scattering channel
model with σϕ = 10◦. The average power of the desired signal, the
non-coherent interference, and the coherent interference are estimated
by Monte Carlo simulations, by averaging over fading realizations. Since
UEs at different locations exhibit very different power levels, we focus
on the average power of the strongest and the weakest UEs in an
arbitrary cell, defined as the ones that achieve the largest and smallest
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desired signal power in a given UE drop, respectively. The non-coherent
interference comes from all UEs, while the coherent interference is
estimated as the additional interference caused by pilot-contaminating
UEs. The powers are normalized with respect to the receiver noise
power, meaning that 0 dB represents a signal that is equally strong as
the noise.

Figure 4.12 shows the signal power and interference power with
uncorrelated fading. The horizontal axes show different pilot reuse
factors f ∈ {1, 2, 4, 16}, where 16 represents the extreme case of having
different orthogonal pilots in every cell (and thus no pilot contamination).
We compare M-MMSE, RZF, and MR combining. Figure 4.12a considers
the strongest UE and Figure 4.12b considers the weakest UE in an
arbitrary cell. For the strongest UE, the desired signal power is almost
the same for every f , which shows that pilot contamination has a minor
impact on the MSE of channel estimates. The desired signal power is 20–
30 dB higher than the non-coherent interference. MR gives the highest
signal power—this is the main purpose of MR—while RZF and M-
MMSE sacrifice a few dB of signal power to find combining vectors that
suppress the interference by 10 dB or more. This explains why RZF and
M-MMSE delivered substantially higher SE than MR in the previous
simulations. M-MMSE benefits the most from increasing the pilot reuse
factor because it can then obtain useful estimates of the channels to UEs
in other cells and use them to suppress the corresponding non-coherent
interference. In all the studied cases, the coherent interference that
affects the strongest UE is negligible, as compared to the non-coherent
interference, since the interfering UEs are much further away from the
receiving BS than the desired UE.

The situation is very different for the weakest UE in the cell, which
is typically at the cell edge. The additional pathloss makes the desired
signal power many tens of dB lower than for the strongest UE. The
channel estimation quality is also lower, thus the desired signal power
after receive combining can be substantially increased by having a
larger f . With MR, the non-coherent interference power is around 10 dB
stronger than the desired signal power since the intra-cell interference
is not suppressed. RZF and M-MMSE can still sacrifice a few dB of
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Figure 4.12: Average UL power of the desired signal, non-coherent interference,
and coherent interference. We consider M = 100, K = 10, and uncorrelated Rayleigh
fading. Different combining schemes and pilot reuse factors are considered.
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signal power to find combining vectors that suppress the non-coherent
interference by 10 dB or more. It is then the coherent interference that
is the dominant interference source when using these schemes. The
coherent interference is basically the same for all schemes, when having
uncorrelated fading, and it can be reduced by increasing f . As for the
strongest UE, M-MMSE benefits the most from increasing f , since it
becomes substantially better at suppressing inter-cell interference.

Figure 4.13 shows the power levels in the same setup as in Figure 4.12,
but for the Gaussian local scattering model. Many of the observations
made for uncorrelated fading are still applicable, but there are some
important differences. First, the coherent interference is substantially
lower since only pilot-sharing UEs with matching spatial correlation
cause strong interference to each other. In fact, the coherent interference
is now negligible, as compared to the non-coherent interference, even for
the weakest UE in a cell. Interestingly, M-MMSE can reject coherent
interference when there is spatial channel correlation, as seen from
the substantially lower coherent interference as compared to MR and
RZF. This property will play a key role in the asymptotic analysis in
Section 4.4. Another consequence of the spatial correlation is that the
desired signal power of the weakest UE increases rather slowly with
f , which shows that it is the pathloss and not the pilot contamination
that has the dominant impact on the channel estimation quality, even
for cell-edge UEs.

In summary, in the running example, pilot contamination has little
impact on the channel estimation quality, except for cell-edge UEs that
exhibit uncorrelated fading. Pilot contamination gives rise to coherent
interference that is stronger than conventional non-coherent interference
in some cases (e.g., for cell-edge UEs with uncorrelated fading), but is
often substantially lower. When coherent interference is an issue, it can
be alleviated by increasing the pilot reuse factor. In these situations,
the remaining impact of pilot contamination is on the pre-log factor of
the SE expression, which decreases with the number of pilots. Recall
from Section 4.1.4 that the highest SE is achieved when using M-MMSE
combining and f = 4 as pilot reuse factor. This scheme uses f = 4 to
obtain estimates of inter-cell channels that are then used to suppress
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Figure 4.13: Average UL power of the desired signal, non-coherent interference,
and coherent interference. We consider M = 100, K = 10, and the Gaussian local
scattering model with ASD σϕ = 10◦. Different combining schemes and pilot reuse
factors are compared.
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both coherent and non-coherent inter-cell interference. The simulation
was performed with M = 100 and K = 10. Adding more UEs will
increase the non-coherent interference level, while adding more antennas
will increase the desired signal power and coherent interference, but also
the ability to suppress the latter. Note that equal power allocation was
used in this simulation, while the results can be different under power
control. In particular, the intra-cell interference that affects cell-edge
UEs can be reduced by lowing the transmit power of cell-center UEs.

4.2.3 SE with Other Channel Estimation Schemes than MMSE

The SE simulations in this section have so far been based on MMSE
channel estimation. Recall that the alternative EW-MMSE and LS
channel estimators were defined in Section 3.4.1 on p. 265 to reduce
the computational complexity, at the cost of reduced estimation quality.
We will now compare the SEs that are achieved when using these
different channel estimators, to figure out by how much the loss in
estimation quality translates into an SE loss. We continue the example
from Figures 4.5 and 4.6, but focus on K = 10 UEs and M = 100
BS antennas. Each combining scheme uses the pilot reuse factor that
maximizes the SE. We will utilize the UatF bound in Theorem 4.4,
which can be applied along with any channel estimator.

Figure 4.14 shows a bar diagram of the average sum SE with M-
MMSE, RZF, and MR combining. The highest SEs are obtained when
using the MMSE estimator, as expected. If the EW-MMSE is used in-
stead, then there is an 8%–12% loss in SE, depending on the combining
scheme. The difference in SE between the EW-MMSE and LS estima-
tors is very small when using RZF or MR combining, but M-MMSE
combining performs poorly with LS. This is because the LS estimator
does not give the right scaling of the channel estimates in the presence
of pilot contamination, but rather acts as an estimator of the sum of the
interfering channels. The consequence is that the norm of the channels
from UEs in other cells are greatly overestimated and M-MMSE will
therefore overemphasize the need for suppressing inter-cell interference.7

7By overemphasizing on interference suppression, M-MMSE behaves like a ZF-
type of scheme that attempts to cancel all interference from all UEs in the network.
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Figure 4.14: Average UL sum SE when using MMSE, EW-MMSE, or LS channel
estimators, for a setup with M = 100 BS antennas and K = 10 UEs per cell. Three
different combining schemes are considered.

The general observation is that the substantial SE gains of using RZF
or M-MMSE combining compared with low-complexity MR combining
remain, irrespective of which channel estimator is used. Note that the
SEs with S-MMSE and ZF are not shown in the figure since they are
very similar to that of RZF.

The example above considered a spatially correlated scenario with
ASD σϕ = 10◦. This is a case where the complexity of the MMSE
estimator is relatively high as compared to EW-MMSE, while these
estimators coincide in the special case of spatially uncorrelated fading.
In summary, the loss in SE incurred by using a suboptimal channel
estimator under strong spatial channel correlation is only 10%, for most
combining schemes, which implies that high-complexity estimation
schemes are not needed in Massive MIMO. The EW-MMSE channel
estimator is suitable for all combining schemes, while the combination
of LS estimation and M-MMSE combining is discouraged.

This type of scheme is called full-pilot ZF in [49] and multi-cell ZF in [193]. It has
the benefit of only exploiting the direction of the channel estimates and therefore LS
estimation can be used.
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4.2.4 Synchronous versus Asynchronous Pilot Transmission

The SE analysis in this monograph is based on the assumption of
synchronous pilot transmission, which means that all UEs in all cells
simultaneously send pilot sequences from the same pilot book. This
has been a common assumption in the Massive MIMO literature since
the seminal paper [208], but there are good reasons to question this
basic assumption. Even if all transmitters are time-synchronized, the
signals will arrive asynchronously at every receiver due to the different
propagation delays. The timing mismatches between neighboring cells
are usually negligible; for example, in OFDM systems, the cyclic prefix
can compensate for propagation path differences of several kilometers.
The cyclic prefix compensates for path differences up to 74 km in digital
audio broadcast (DAB) [143], while the normal and extended cyclic
prefixes in LTE compensates for path differences up to 1.6 km and 5 km,
respectively [165]. Since the strongest interference originates from the
own and neighboring cells, having a more detailed model of the timing
mismatches from distant cells will probably have little impact on the
communication performance, but this remains to be proved rigorously.
An accurate model needs to take inter-symbol interference into account
[375, 263].

The main benefit of pilot synchronism is to control the inter-cell
interference during pilot transmission, for example, by using a pilot
reuse factor f > 1. However, if we do not exploit this possibility but set
f = 1 and τp = K, the interference will be roughly the same irrespective
of whether the UEs in adjacent cells are sending pilots or data when
the considered UEs are sending their pilots. This scenario was studied
in [244, 48] for a case with K UEs per interfering cell. Looking at an
arbitrary UE, in the case of synchronous pilot transmission, one UE per
interfering cell reuses its pilot and causes coherent interference with a
power proportional toM . In case of non-synchronous pilot signaling, the
K UEs in an interfering cell send random data sequences. On average
only a fraction 1/τp = 1/K of their transmit power is sent in parallel
with the pilot sequence of the considered UE, thus each interfering UE
causes coherent interference with a power proportional to M/K. Since
there are K interfering UEs per cell, the total coherent interference
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is proportional to M . Hence, the total coherent interference power
is the same with both synchronous and asynchronous pilot signaling,
which means that the same SE is achieved in both cases. In summary,
synchronous pilot transmission is helpful to mitigate interference, but
nothing fundamentally different happens if we relax the synchronism
and let other cells send random interfering signals.

4.3 Downlink Spectral Efficiency and Transmit Precoding

Each BS transmits payload data to its UEs in the DL, using linear
precoding as defined in Section 2.3.2 on p. 227. Recall that ςjk ∼
NC(0, ρjk) denotes the random data signal intended for UE k in cell j,
for j = 1, . . . , L and k = 1, . . . ,Kj . This UE is associated with the
precoding vector wjk ∈ CMj that determines the spatial directivity
of the transmission. The precoding vector satisfies E{‖wjk‖2} = 1,
so that the signal power ρjk is also the transmit power allocated to
this UE. One way to implement the precoding normalization is to
make ‖wjk‖2 = 1 in every coherence block, but it is sometimes more
analytically tractable to have an average normalization over many
coherence blocks. The difference between these normalizations is small
when there is substantial channel hardening.

The UL and DL channels are reciprocal within a coherence block,
which enables the BS to use the UL channel estimates also for the
computation/selection of precoding vectors. The desired signal to UE k

in cell j propagates over the precoded channel gjk = (hjjk)Hwjk. The
UE does not know gjk a priori, but can either approximate it with the
mean value E{gjk} = E{(hjjk)Hwjk} or estimate it from the received DL
signals. We begin with the former case, which has been the dominating
approach in the Massive MIMO literature since the early works [169,
148], while we consider the latter case in Section 4.3.3. The received DL
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signal yjk in (2.8) can then be expressed as

yjk = E{(hjjk)Hwjk}ςjk︸ ︷︷ ︸
Desired signal over average channel

+
(
(hjjk)

Hwjk − E{(hjjk)Hwjk}
)
ςjk

︸ ︷︷ ︸
Desired signal over unknown channel

+
Kj∑

i=1
i 6=k

(hjjk)
Hwjiςji

︸ ︷︷ ︸
Intra-cell interference

+
L∑

l=1
l6=j

Kl∑

i=1
(hljk)Hwliςli

︸ ︷︷ ︸
Inter-cell interference

+ njk

︸︷︷︸
Noise

. (4.25)

The first term in (4.25) is the desired signal received over the deter-
ministic average precoded channel E{(hjjk)Hwjk}, while the remaining
terms are random variables with realizations that are unknown to the
UE. An achievable SE can be computed by treating these terms as noise
in the signal detection, by utilizing Corollary 1.3 on p. 171. We then
obtain the following capacity bound, which we call the hardening bound.
It holds for any choice of precoding vectors and channel estimation
schemes.

Theorem 4.6. The DL ergodic channel capacity of UE k in cell j is
lower bounded by SEDL

jk = τd
τc

log2(1 + SINRDL
jk ) [bit/s/Hz] with

SINRDL
jk =

ρjk|E{wH
jkh

j
jk}|2

L∑
l=1

Kl∑
i=1

ρliE{|wH
lihljk|2} − ρjk|E{wH

jkh
j
jk}|2 + σ2

DL
(4.26)

where the expectations are with respect to the channel realizations.

Proof. The proof is available in Appendix C.3.6 on p. 599.

The SE in Theorem 4.6 has the form τd
τc

log2(1 + SINRDL
jk ) which

makes it convenient to refer to SINRDL
jk as the effective SINR of the

fading DL channel to UE k in cell j. It is a deterministic scalar and
the expression contains several expectations over the random channel
realizations. The numerator of SINRDL

jk contains the gain of the desired
signal received over the average precoded channel. The first term in
the denominator is the received power of all signals, while the second
term subtracts the part of the desired signal that appeared in the
numerator (i.e., the part useful for signal detection). The third term
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is the noise variance. The SE expression can be computed numerically
for any channel model and precoding scheme. The pre-log factor τd

τc
is

the fraction of samples per coherence block that are used for DL data.
Since τd = τc − τp − τu, the pre-log factor increases if we shorten the
length τp of the pilot sequences (i.e., reduce the pilot overhead) and/or
reduce the number of samples τu used for UL data.

The DL SE of UE k in cell j depends on the precoding vectors of all
UEs in the entire network, in contrast to the UL SE in Theorem 4.1 that
only depends on its own combining vector vjk. Hence, the precoding
vectors should ideally be selected jointly across the cells, which makes
precoding optimization difficult in practice [40]. A heuristic approach
to precoding selection is later described in Section 4.3.2.

One simple and popular choice is MR precoding, which for UE k in
cell j is based on the channel estimate ĥjjk. One variant of MR precoding
is

wjk = ĥjjk/
√
E{‖ĥjjk‖2} (4.27)

where the scaling is selected to satisfy the precoding normalization
constraint E{‖wjk‖2} = 1. The SE expression in Theorem 4.6 can be
computed in closed form for this average-normalized MR precoding.

Corollary 4.7. If average-normalized MR precoding is used, with wjk =
ĥjjk/

√
E{‖ĥjjk‖2} based on the MMSE channel estimate, then the SE

expression in Theorem 4.6 becomes SEDL
jk = τd

τc
log2(1 + SINRDL

jk ) with

SINRDL
jk =

ρjkpjkτptr
(
Rj
jkΨ

j
jkR

j
jk

)

L∑

l=1

Kl∑

i=1

ρlitr
(
Rl
jkRl

liΨl
liRl

li

)

tr
(
Rl
liΨl

liRl
li

)

︸ ︷︷ ︸
Non-coherent interference

+
∑

(l,i)∈Pjk\(j,k)

ρlipjkτp
∣∣∣tr
(
Rl
jkΨl

liRl
li

)∣∣∣
2

tr
(
Rl
liΨl

liRl
li

)

︸ ︷︷ ︸
Coherent interference

+σ2
DL

(4.28)

where Ψj
jk and Ψl

li were defined in (3.10).
In the special case of spatially uncorrelated fading (i.e., Rj

li = βjliIMj
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for l = 1, . . . , L and i = 1, . . . ,Kl), (4.28) simplifies to

SINRDL
jk =

ρjkpjk(βjjk)2τpψjkMj

L∑

l=1

Kl∑

i=1
ρliβ

l
jk

︸ ︷︷ ︸
Non-coherent interference

+
∑

(l,i)∈Pjk\(j,k)
ρlipjk(βljk)2τpψliMl

︸ ︷︷ ︸
Coherent interference

+σ2
DL

(4.29)

where ψli was defined in (4.20).

Proof. The proof is available in Appendix C.3.7 on p. 600.

4.3.1 Pilot Contamination in the Downlink

The closed-form DL SE expression in Corollary 4.7 has a structure that
resembles that of the UL SE in Corollary 4.5. The signal term in the
numerator is the same as in the UL, except that pjkτptr(Rj

jkΨ
j
jkR

j
jk)

is multiplied with the DL power ρjk instead of the UL power. This
term increases linearly with Mj , since the trace adds up the Mj signal
components coherently. This is the array gain from the precoding
and the scaling with Mj is explicit in the special case of uncorrelated
fading. Note that pjkτptr(Rj

jkΨ
j
jkR

j
jk) = tr(Rj

jk −Cj
jk), thus the array

gain is directly related to the estimation quality. The first term in the
denominator is the non-coherent interference from all UEs. The strength
of the interference is determined by how similar the spatial correlation
matrices Rl

jk and Rl
li are, which can be measured in terms of how

large tr(Rl
liRl

jk)/tr(Rl
jk) is. The two correlation matrices describe the

channels from the interfering BS l to the receiving UE and to one of the
interfering UEs in cell l. The interference is small when the interfering
BS is far away and/or the spatial channel correlation properties are
very different for the two UEs. In the extreme case of Rl

liRl
jk = 0Ml×Ml

,
there is no interference between the two UEs, since their channels “live”
in separate eigenspaces. Note that the non-coherent interference term
simplifies to ρliβljk in uncorrelated fading, which is independent of the
location of the interfering UE (except if the power allocation is based
on it).
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BS j

UE k,  cell l

BS l

UE k,  cell j

Figure 4.15: When two UEs transmit the same pilot sequence, as illustrated
Figure 3.1, the pilot contamination affects the DL signals. When a BS attempts to
direct a signal towards its own UE using MR precoding, it will also partially direct it
towards the pilot-interfering UE in the other cell. Each color represents one precoded
DL signal.

The second term in the denominator is the additional coherent
interference that scales with Ml and originates from the signals to UEs
that share the same pilot; that is, pilot contamination also affects the
DL. In this case, the BS uses precoding to direct the signals towards the
intended receivers, but partially also direct them towards the UEs that
interfered with the pilot transmission. This phenomenon is illustrated
in Figure 4.15. Note that the scaling factor Ml is determined by the
number of antennas at the interfering BS l in the DL. Hence, a BS with
many antennas must be careful not to interfere too much with other
cells that have fewer BS antennas. The third term in the denominator
is the noise power, which might be different between the DL and UL
since different receiver hardware is used.

4.3.2 Principle for Precoding Design: Uplink-Downlink Duality

It is nontrivial to select precoding vectors. This is because each UE
is affected by all precoding vectors in the network and network-wide
precoding optimization is highly impractical. Clearly, the precoding
must balance between selfishly directing the signal towards the desired
UE and altruistically avoiding to cause interference to other UEs [167].
The difficulty is to find the right balance between these two goals,
particularly when many UEs are involved. It is therefore desirable to
have a judicious, yet tractable, design principle for precoding. Many
heuristic precoding design principles can be found in the literature, but
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the well-designed ones are usually rather similar and strongly connected
to a fundamental property called UL-DL duality [46, 40]. We describe
this duality below and explain how it can guide us in the precoding
design.

There is a strong connection between the SE expression for the UL
in Theorem 4.4 and the DL in Theorem 4.6. Except for the different
notation for the transmit powers, the signal terms are the same and
the interference terms are similar but the indices (j, k) and (l, i) are
interchanged for every UE: pliE{|vH

jkh
j
li|2} in the UL is replaced by

ρliE{|wH
lihljk|2} in the DL. This represents the fact that the UL interfer-

ence from cell l is received over Kl different UE channels (and processed
using a single combining vector), while all the DL interference from cell l
is received over the channel from BS l (and depends on Kl precoding
vectors). Figure 4.16 illustrates this property from the perspective of
two UEs in the network. In this example, BS l can separate the UEs
well spatially, while BS j cannot (illustrated here as having a small
angular difference between the UEs). The consequence is that the UE in
cell j is affected by high interference from the other-cell UE in the UL,
while the UE in cell l receives high interference from BS j in the DL.
It can, therefore, happen that a UE exhibits very different interference
levels in UL and DL.

Despite the differences in how the interference is generated, there is a
symmetry that creates a fundamental connection between the achievable
SEs in UL and DL, which is called the UL-DL duality.

Theorem 4.8. Let p = [pT
1 . . . pT

L]T, with pj = [pj1 . . . pjKj ]T, be the
Ktot × 1 vector with all UL transmit powers, where Ktot = ∑L

l=1Kl

denotes the total number of UEs in the network.
Consider the UL SINRUL

jk in (4.14) and the DL SINRDL
jk in (4.26).

For any given set of receive combining vectors {vli} and given p, we
can achieve

SINRDL
jk = SINRUL

jk j = 1, . . . , L, k = 1, . . . ,Kj (4.30)

if the precoding vectors are selected as

wjk = vjk/
√
E{‖vjk‖2} (4.31)
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(a) UL: UE k in cell j is affected by high interference from
UE i in cell l.

BS jBS l

UE k,  cell j

UE i,  cell l

ϕ l
jk ϕ l

li
– ϕj

li ϕj
jk

–

Large
difference

Small
difference

Cell boundary

Intended transmission Interfering transmission

(b) DL: UE i in cell l receives high interference from BS j.

Figure 4.16: Illustration of how the interference situation can change between
the UL and DL. The UL interference comes from the interfering UE, while the
DL interference is caused by the BS that serves the interfering UE. In this setup,
BS j cannot separate the two UEs due to the similar spatial channel correlation
(illustrated as a small angular difference), thus its own UE is affected by high UL
interference and the other-cell UE will get high DL interference. In contrast, BS l
can separate the UEs well, which leads to little interference in both UL and DL.
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for all j and k. Moreover, the vector ρ = [ρT
1 . . . ρ

T
L]T with DL transmit

powers, with ρj = [ρj1 . . . ρjKj ]T, are selected based on the UL transmit
powers as

ρ = σ2
DL
σ2

UL

(
D−1 −B

)−1 (
D−1 −BT

)
p. (4.32)

The sum transmit powers in the DL and UL are related as
1T
Ktotρ

σ2
DL

=
1T
Ktotp
σ2

UL
. (4.33)

In (4.32), B ∈ RKtot×Ktot is a block matrix with L × L blocks. The
(j, l)th block is denoted by Bjl, has dimension Kj ×Kl, and its (k, i)th
element is

[Bjl]ki =





E{|vH
jkhljk|2}−|E{vH

jkh
j
jk
}|2

E{‖vjk‖2} if k = i and j = l
E{|vH

lihljk|2}
E{‖vli‖2} otherwise.

(4.34)

Finally, D = diag(D1, . . . ,DL) ∈ RKtot×Ktot is a (block) diagonal ma-
trix. The jth diagonal block is denoted by Dj and is a diagonal matrix
with the kth element being

[Dj ]kk = SINRUL
jk

E{‖vjk‖2}
|E{vH

jkh
j
jk}|2

. (4.35)

Proof. The proof is available in Appendix C.3.8 on p. 602.

This UL-DL duality theorem shows that the SE achieved in the UL
can be achieved also in the DL, if the UL combining vectors are used as
DL precoding vectors and the DL transmit power is allocated according
to (4.32). Simply speaking, each BS should “listen” to the signal from
a UE by directing its “hearing” towards a particular spatial direction
(selected to balance between high signal power and low interference).
The BS then transmits back to the UE in the same spatial direction.
If σ2

DL = σ2
UL, the sum transmit power is the same in the UL and DL,

but the total power is generally allocated differently among the UEs.
For example, consider a setup with one UE at the cell edge and one at
the cell center. The cell-center UE has a stronger channel and should
use a low UL power not to interfere too much with the cell-edge UE,
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which has a weaker channel. It can, however, get a higher DL power
since the desired and interfering signals are subject to the same average
channel gain in the DL, meaning that the cell-edge UE is less sensitive
to intra-cell interference in the DL than in the UL.

The UL-DL duality in cellular networks has been analyzed for
decades and some notable early works are [370, 63, 335, 163]. Various
generalizations of the duality concept have been established to take
multicell properties, power constraints, and transceiver hardware im-
pairments into account; see, for example, [345, 367, 39, 71]. The duality
property in Massive MIMO, described in Theorem 4.8, is different in the
sense that it applies to the ergodic SE of fading channels, in contrast
to the deterministic channels considered in earlier works. This result
was first established in [49]. Note that exact duality holds between the
UatF capacity bound of the UL and hardening bound for the DL.

The UL-DL duality motivates a simple precoding design principle:
select the DL precoding vectors based on the UL receive combining
vectors as

wjk = vjk
‖vjk‖

(4.36)

where

[
vj1 . . . vjKj

]
=





VM-MMSE
j with M-MMSE precoding

VS-MMSE
j with S-MMSE precoding

VRZF
j with RZF precoding

VZF
j with ZF precoding

VMR
j with MR precoding.

(4.37)

The corresponding combining matrices were defined in (4.7)–(4.11).
Note that this design principle is not unique to Massive MIMO, but
different flavors of it have been proposed over the past two decades; the
early works build indirectly on UL-DL duality [373, 164, 282], while
later works refer directly to the duality [98, 368, 40]. The precoding
design principle in (4.36) gives ‖wjk‖2 = 1 in every coherence block,
which satisfies the required precoding normalization.8

8The UL-DL duality suggests an average-normalized precoding where wjk =
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Scheme Transmission Computing precoding vectors
Multiplications Multiplications

Any τdMjKj MjKj

Table 4.4: Computational complexity per coherence block of any transmit precoding
scheme, when the precoding is selected based on the combining scheme as in (4.36).
Only complex multiplications are considered, while additions and subtractions are
neglected; see Appendix B.1.1 on p. 558 for details.

The five precoding schemes in (4.37) depend on the UL transmit
power used during pilot signaling, while none of them depends on the DL
transmit power (which however appears in the DL effective SINR expres-
sion). One important benefit of using the receive combining vectors for
transmit precoding is that the computational complexity of computing
the precoding vectors reduces to MjKj complex multiplications, which
corresponds to computing ‖vjk‖ in (4.36) for every UE.9 The complexity
of computing the τd transmit signals ∑Kj

k=1 wjkςjk at BS j is τdMjKj

complex multiplications per coherence block; see Appendix B.1.1 on
p. 558 for details. These numbers are summarized in Table 4.4 and we
stress that the complexity of precoding is the same irrespective of the
choice of precoding scheme, since the combining vectors are used.

There are other precoding schemes in the literature than those listed
in (4.37). For example, the polynomial expansion method described in
Remark 4.2 can be utilized to reduce the computational complexity of
RZF precoding. This has been studied in [173, 231, 372].

4.3.3 Spectral Efficiency with Downlink Channel Estimation

The SE in Theorem 4.8 was derived under the simplifying assumption
that the receiving UE has only access to the mean of its precoded

vjk/
√

E{‖vjk‖2}, but in practice one should use the stricter precoding normalization
wjk = vjk/‖vjk‖ instead to reduce the random variations in the precoded channel
(hjjk)Hwjk. This gives better SE since the desired signal ςjk encodes information as
phase and amplitude variations; see Figure 4.11 for an illustration of the importance
of using instantaneous normalization.

9The normalization can be absorbed into the scalar signal ςjk and the corre-
sponding complexity is thus negligible.
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channel. Reception without instantaneous CSI only makes sense when
the precoded channel is nearly deterministic so that the variations
are small. This is approximately the case under channel hardening,
but there is generally a performance loss. The loss grows with the
channel variations and is particularly large for special types of channels
that exhibit little or no hardening [243]. In this section, we consider
the alternative approach of estimating the realizations of the precoded
channels at the UEs. Since the precoded channel gjk is constant within a
coherence block, UE k in cell j can estimate it blindly from the received
DL signals, without sending any DL pilots. An explicit algorithm for
such estimation can be found in [243], but here we will instead derive a
lower bound on the DL capacity that implicitly takes the acquisition
of the precoded channels into account. We generalize the bounding
technique from [72] to the multicell scenario considered herein and
obtain the following result, which we call the estimation bound.

Theorem 4.9. The DL ergodic channel capacity of UE k in cell j is
lower bounded by SEDL

jk [bit/s/Hz] given by

SEDL
jk = τd

τc
E
{

log2
(
1 + SINRDL

jk

)}
−

Kj∑

i=1

1
τc

log2


1 +

ρjiτdV{wH
jih

j
jk}

σ2
DL




(4.38)
if each BS computes its precoding vectors using only its own channel
estimates: ĥjli for all l and i. The expectation/variances in (4.38) are
computed with respect to the channels hjli, for all l and i, and

SINRDL
jk =

ρjk|wH
jkh

j
jk|2

Kj∑
i=1
i6=k

ρji|wH
jih

j
jk|2 +

Kl∑
l=1
l 6=j

Kl∑
i=1

ρliE
{
|wH

lihljk|2
}

+ σ2
DL

(4.39)

where the expectations are computed with respect to all other channels.

Proof. The proof is available in Appendix C.3.9 on p. 604.

The SE provided in (4.38) is obtained as the difference between
two terms, which have intuitive interpretations. The first term can
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be called “SE with perfect intra-cell CSI”, because it represents the
SE that is achieved if the receiving UE knows the precoded intra-cell
channels wH

jih
j
jk for i = 1, . . . ,Kj .10 The second term can be called “CSI

uncertainty loss”, because it compensates for the imperfect intra-cell
CSI at the UE. This term depends on τd and τc and goes to zero as
τc →∞, even if also τd increases (recall that τd ≤ τc). This proves that if
a large coherence block is used for DL transmission, the UE can estimate
the precoded channel perfectly [261]. Since the capacity is unknown,
the lower bound that gives the largest value is the best performance
indicator that we have. Clearly, the estimation bound in Theorem 4.9
will be larger than the hardening bound in Theorem 4.6 when τd and
τc are sufficiently large, but it is hard to identify the crossing point
analytically. We will show numerically that the estimation bound gives
larger values when using precoding schemes that cause less interference.
On the other hand, it can happen for small channel coherence blocks
and/or large intra-cell interference that the second term in (4.38) is so
large that the theorem provides a negative SE value. This is an artifact
from the bounding technique that neglects a positive term that would
have made the SE positive in these special cases (see [72] for a solution).

We compare the two DL SE bounds by continuing the running
example that was defined in Section 4.1.3. We consider M = 100
antennas, K = 10 UEs per cell, and equal DL power allocation of
20 dBm per UE. We consider both the Gaussian local scattering model
with ASD σϕ = 10◦ and uncorrelated Rayleigh fading. The length of
the coherence block τc is varied and τd = τc − τp samples are used for
DL data transmission per block.

Figure 4.17 shows the sum SE with the hardening bound from
Theorem 4.6 and the estimation bound from Theorem 4.9 when using M-
MMSE, RZF, or MR precoding. The horizontal axis shows the coherence
block length, using a logarithmic scale that emphasizes the behaviors
for small τc. The SE is maximized with respect to the pilot reuse factor
f ∈ {1, 2, 4} for each value of τc, which results into the “bumps” in

10One can also derive an SE bound where the first term represents that the UE
knows the precoded channels from all BSs. That bound gives larger SE as τc →∞,
but we have noticed that for practical value of τc, the bound in Theorem 4.9 gives
larger values.
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(a) Gaussian local scattering model with ASD σϕ = 10◦.
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(b) Uncorrelated fading.

Figure 4.17: Average DL sum SE based on either the hardening bound in The-
orem 4.6 or the estimation bound in Theorem 4.9, as a function of the length τc
of the coherence block. There are M = 100 antennas, K = 10 UEs, and the SE is
maximized with respect to the pilot reuse factor.
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the curves. All curves increase monotonically with τc, since the pre-
log factor τu

τc
= 1 − τp

τc
increases. The estimation bound also benefits

from an increasing τc in terms of improved DL channel estimation,
thus this bound is the better choice when the coherence block is large.
The crossing point depends on the spatial channel correlation and the
precoding scheme because spatial correlation increases the variations
in the precoded channel and the precoding determines the interference
level under which the DL channels are estimated. M-MMSE benefits the
most from using the estimation bound, which is desirable for τc > 36
with the local scattering model and for τc > 120 with uncorrelated
fading. RZF has a similar behavior, but slightly larger τc is required
before the estimation bound becomes advantageous. The case is different
for MR, where the hardening bound gives the highest values, except
for very large coherence blocks. This is because MR leads to strong
interference that makes the DL channel estimation challenging, leading
to a large subtractive term in (4.38).

In summary, it is harder to characterize the DL capacity than the
UL capacity, because there are multiple bounds and none of them is
always the preferable one; that is, the one providing the largest value.
The UE should estimate the realization of the precoded channel from
the received signals, but it is challenging to find the best estimator since
it is hard to quantify the exact SE for a given estimation scheme.

4.3.4 Comparison of Precoding Schemes

We will now compare the SE achieved with different precoding schemes
by continuing the running example that was defined in Section 4.1.3. We
consider the same scenario as in the UL example in Section 4.1.4, which
means K = 10 UEs per cell and a varying number of BS antennas. Equal
DL power allocation of 20 dBm per UE and the Gaussian local scattering
channel model with ASD σϕ = 10◦ are assumed. Each coherence block
consists of τc = 200 samples, whereof τd = τc − fK samples are used
for DL data transmission and there are τp = fK pilot sequences. For
each scheme and number of antennas, we use the DL capacity bound
and pilot reuse factor f ∈ {1, 2, 4} that gives the largest SE.

Figure 4.18 shows the average DL sum SE with f = 1. We consider
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Figure 4.18: Average DL sum SE as a function of the number of BS antennas for
different precoding schemes. There are K = 10 UEs per cell and the same K pilots
are reused in every cell.

M-MMSE, S-MMSE, RZF, ZF, and MR precoding. These precoding
schemes behave in a similar way as their UL counterparts. M-MMSE
provides the highest SE for any number of antennas. S-MMSE, RZF,
and ZF provide almost the same SE, except that ZF has robustness
issues for M < 20 antennas. Finally, MR provides the lowest SE among
all schemes and it is also the only scheme that prefers the hardening
bound over the estimation bound. MR achieves only 40%–50% of the
SE provided by M-MMSE and 50%–60% of the SE provided by RZF.

Figure 4.19 shows the corresponding sum SE with f = 2 and f = 4
as pilot reuse factors. The results are once again similar to the UL, both
in terms of the SE values and the fact that M-MMSE gives its highest
performance with f = 4, S-MMSE, RZF, and ZF prefer f = 2, and
MR gives its highest SE with f = 1. This observation is emphasized
in Table 4.5, which lists the sum SEs with M = 100 for the different
precoding schemes. As in the UL, the computational complexity is
higher for the precoding/combining schemes that provide higher SEs,
and we can appoint M-MMSE, RZF, and MR as three distinct tradeoffs
between high SE and low complexity. These are the schemes to choose
between in a practical implementation.
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(a) Pilot reuse factor f = 2.
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(b) Pilot reuse factor f = 4.

Figure 4.19: Average DL sum SE as a function of the number of BS antennas for
different precoding schemes. There are K = 10 UEs per cell and either 2K or 4K
pilots that are reused across cells according to the pattern in Figure 4.4b.
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Scheme f = 1 f = 2 f = 4
M-MMSE 46.67 51.57 52.63
S-MMSE 42.24 43.13 40.32
RZF 40.44 41.63 38.92
ZF 40.40 41.60 38.89
MR 24.12 23.83 21.93

Table 4.5: Average DL sum SE [bit/s/Hz/cell] forM = 100 and K = 10 for different
pilot reuse factors f . The largest value for each scheme is in bold face. The results
are based on Figures 4.18 and 4.19.
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Figure 4.20: Average DL sum SE when using the MMSE, EW-MMSE, or LS
channel estimators, for a setup with M = 100 BS antennas and K = 10 UEs per cell.
Three different precoding schemes are considered. The UL counterpart was provided
in Figure 4.14 and shows similar results.

4.3.5 SE with Other Channel Estimation Schemes than MMSE

The previous DL SE simulation was based on MMSE channel estimation,
but we will now investigate how the SE is affected by using the low-
complexity EW-MMSE and LS channel estimators. We continue the
example from Figures 4.18 and 4.19, but focus on K = 10 UEs,M = 100
BS antennas, and for each precoding scheme we use the pilot reuse
factor that maximizes the SE.

Figure 4.20 shows a bar diagram over the average sum SE with
M-MMSE, RZF, and MR precoding. As expected, the highest SEs are
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obtained with the MMSE estimator. There is an SE loss of 10%–12% if
the EW-MMSE estimator is used instead. The difference in SE between
the EW-MMSE and LS estimators is very small when using RZF or
MR precoding, while M-MMSE precoding performs poorly with LS. As
previously discussed in Section 4.2.3, this is because the LS estimator
does not give the right scaling when estimating the channels to UEs
in other cells, which leads to an overemphasis on mitigating inter-cell
interference. This issue can be solved in practice by reducing the norm
of the inter-cell channel estimates.

In summary, the SE loss incurred in the DL by using a suboptimal
channel estimator is only 10% in the considered scenario (similar results
were obtained for the UL in Section 4.2.3). Hence, the substantial
SE gains of using RZF or M-MMSE precoding compared with low-
complexity MR precoding remain. It is only the suppression of inter-cell
interference in M-MMSE precoding that is particularly sensitive to the
choice of channel estimator.

4.3.6 Differences in Interference Between UL and DL

Despite the UL-DL duality, there are important differences between
UL and DL. We will exemplify one of the key differences, namely how
the interference that affects a UE is formed. To this end, we continue
the running example that was defined in Section 4.1.3 and measure
the average desired signal power and interference power, normalized
by the noise power, at 1600 random UE locations with corresponding
shadow fading realizations. We compare MR and M-MMSE combin-
ing/precoding using M = 100 antennas, K = 10 UEs per cell, and
f = 1. Each setup with 16 cells gives 160 UE locations. The simulation
shows 1600 random locations from ten setups.

The desired signal power decays with the propagation distance in
both UL and DL so that large values are achieved in the cell center
and small values at the cell edge. The signal power and interference
power of a UE are essentially independent in the UL, because all signals
are received at the same BS. This is illustrated by the scatter plots in
Figure 4.21, where each point represents the signal and interference
power of one UE. The Gaussian local scattering model with ASD
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(a) MR: Signal and interference values are basically independent.
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(b) M-MMSE: Signal and interference values are basically independent.

Figure 4.21: Scatter plot of the average UL signal power and UL interference power
received at different UE locations. M-MMSE and MR combining with universal pilot
reuse are considered. The Gaussian local scattering model with ASD σϕ = 10◦ is
used. The boxes indicate the shape of the point clouds.



4.4. Asymptotic Analysis 335

σϕ = 10◦ is considered, but uncorrelated fading would result in the
same behavior (but smaller variations). The interference powers have
the same spread irrespective of the signal power, thus making the point
cloud resemble a horizontal rectangle, as illustrated in the figure. The
interference power and signal power are statistically higher with MR
than with M-MMSE, which sacrifices some of the signal power to reduce
the interference powers with tens of dB.

In contrast, the desired signal power and interference power are
coupled in the DL, because all desired and interfering signals from a
particular cell are received through the same channel from the cell’s BS.
UEs with strong channels are more likely to receive strong intra-cell
interference and vice versa. This is illustrated by the scatter plots in
Figure 4.22, using the same fading model as in the previous figure.
MR precoding shows the expected behavior where the point cloud re-
sembles a rectangle that has been rotated 45◦, as illustrated in the
figure. Interestingly, M-MMSE precoding suppresses the coupling be-
tween the desired signal power and interference power, leading to a
situation that resembles the UL. This is because M-MMSE identifies
and mitigates the strongest sources of interference, leading to more
interference suppression between UEs in the cell-center than UEs at
the cell-edge.

In summary, there are distinct differences between the interference
sources that affect a UE in UL and DL. Although the use of M-MMSE
(and similar schemes that suppress interference) can reduce these dif-
ferences, it is important to take them into account when designing
the power allocation (see Section 7.1 on p. 452) and other resource
allocation tasks.

4.4 Asymptotic Analysis

In this section, we analyze how the SE behaves when the number of BS
antennas is very large. A convenient way to analyze this is to investigate
the asymptotic regime where Mj → ∞, as was done in Marzetta’s
seminal work [208] on Massive MIMO. Similar asymptotic studies were
carried out in [169, 244, 281, 43] and numerous other papers. There
is also a branch of literature that studies the alternative asymptotic
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(a) MR: Signal and interference values are strongly coupled.
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(b) M-MMSE: Signal and interference values are basically independent.

Figure 4.22: Scatter plot of the average DL signal power and DL interference power
received at different UE locations. M-MMSE and MR precoding with universal pilot
reuse are considered. The Gaussian local scattering model with ASD σϕ = 10◦ is
used. The boxes indicate the shape of the point clouds.
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regime where both Mj and Kj go to infinity, with a finite non-zero
ratio; for example, [148, 173, 336]. The purpose of asymptotic analysis
is not that any of these parameters will be nearly infinite in practice
(that is physically impossible as explained in Remark 1.3 on p. 192),
but is to understand the scaling behaviors and whether there are any
fundamental SE limits.

We will let Mj → ∞ for a fixed number of UEs per cell, as in
[208]. While [208] focused on uncorrelated Rayleigh fading and MR,
we will analyze the impact of spatial channel correlation and compare
different combining/precoding schemes. This will uncover that spatially
correlated channels behave fundamentally different than spatially un-
correlated channels in the asymptotic regime, which is a relatively new
discovery [44, 43, 239]. We have considered arbitrary spatial correlation
matrices so far, but two technical assumptions are needed to enable
asymptotic analysis.

Assumption 1. The spatial correlation matrix Rj
li satisfies

1. lim inf
Mj

1
Mj

tr(Rj
li) > 0

2. lim sup
Mj

‖Rj
li‖2 <∞

for l = 1, . . . , L and i = 1, . . . ,Kl.

The operators “lim inf” and “lim sup” are the sequence-counterparts
of the conventional limit operator for functions. They give the smallest
and largest values in the asymptotic tail of the sequence (the smallest
and largest value are different if the sequence oscillates). These operators
are applied to the sequence of correlation matrices Rj

li ∈ CMj×Mj with
different dimensions that is generated when Mj grows. The first condi-
tion in Assumption 1 implies that the array gathers an amount of signal
energy that is proportional to the number of antennas, which is natural
if the array aperture grows with Mj . The second condition implies that
the increasing signal energy is spread over many spatial dimensions and
does not concentrate on only a few very strong directions; that is, all
eigenvalues of Rj

li remain bounded as Mj grows. A consequence of these
conditions is that the rank of Rj

li must be proportional to Mj , but full
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rank is not required; for example, a fraction of the array can be totally
blocked from the UE. Assumption 1 is actually a sufficient condition
for asymptotic channel hardening and favorable propagation (see Sec-
tion 2.5 on p. 231). In case of uncorrelated fading with Rj

li = βjliIMj ,
we have 1

Mj
tr(Rj

li) = βjli and ‖R
j
li‖2 = βjli, thus Assumption 1 requires

βjli to be strictly positive and finite in this case.

4.4.1 Linearly Independent and Orthogonal Correlation Matrices

The asymptotic results will depend on how different the spatial correla-
tion matrices of the UEs are. Two measures of such difference play a
key role, whereof the first one is linear independence.

Linear independence

A set of vectors is linearly independent if no vector in the set can be
written as a linear combination of the others. In this section, we will
apply this concept to matrices.

Definition 4.1 (Linearly independent correlation matrices). Consider the
correlation matrix R ∈ CM×M . This matrix is linearly independent of
the correlation matrices R1, . . . ,RN ∈ CM×M if

∥∥∥∥∥R −
N∑

i=1
ciRi

∥∥∥∥∥

2

F

> 0 (4.40)

for all scalars c1, . . . , cN ∈ R. We further say that R is asymptotically
linearly independent of R1, . . . ,RN if

lim inf
M

1
M

∥∥∥∥∥R −
N∑

i=1
ciRi

∥∥∥∥∥

2

F

> 0 (4.41)

for all scalars c1, . . . , cN ∈ R.

Note that linear independence means that the correlation matrix R
cannot be written as a linear combination of the matrices R1, . . . ,RN .
These matrices can all have full rank, but different eigenvalues (and
also different eigenvectors). The asymptotically linear independence
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condition is a more restrictive condition, since it does not only require
linear independence, but also that the subspace in which the matrices
differ has a norm (e.g., a sum of eigenvalues) that grows at least linearly
with M . We will give two examples to describe the implications of this
definition.

Example of Asymptotic Linear Independence

First, we consider the correlation matrices

R =
[
2IM ′ 0

0 IM−M ′

]
and R1 =

[
IM ′ 0
0 IM−M ′

]
(4.42)

where the two matrices are different in the first M ′ diagonal elements,
for some integer M ′ ≥ 1. These matrices are linearly independent since
none of them can be written as a scalar times the other matrix. Moreover,
we have that

1
M
‖R − c1R1‖2F = M ′(2− c1)2 + (M −M ′)(1− c1)2

M

≥ (M −M ′)M ′
M2 (4.43)

where the lower bound follows from minimizing the expression with
respect to c1 (the minimum is achieved by c1 = (M + M ′)/M). If
M ′ = aM , for some a satisfying 0 < a < 1, then (4.43) becomes

1
M
‖R − c1R1‖2F ≥

(M −M ′)M ′
M2 = (1− a)a. (4.44)

The lower bound is then non-zero for any M , thus (4.41) is satisfied and
we conclude that R and R1 are also asymptotically linearly independent.
If either M ′ or M −M ′ are instead constant, then (M−M ′)M ′

M2 → 0 as
M → ∞ and there is no asymptotic linear independence. In other
words, the asymptotic definition in (4.41) requires the subspace where
the matrices are linearly independent to have a dimension that is
proportional to M .

Linearly Dependent Matrices are Sensitive to Perturbations

Channels with uncorrelated fading, where the correlation matrices are
scaled identity matrices, is a notable example of matrices that are not
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linearly independent. However, any such example is non-robust to minor
variations in the matrix elements. For example, consider

R =




ε1 0 . . .

0 . . . 0
. . . 0 εM


 and R1 = IM (4.45)

where ε1, . . . , εM are i.i.d. random variables. The two matrices are
linearly independent, except in the special case of ε1 = ε2 = . . . = εM ,
which has zero probability if the random variables have continuous
distributions. Moreover, we have that

1
M
‖R − c1R1‖2F = 1

M

M∑

m=1
(εm − c1)2

≥ 1
M

M∑

m=1

(
εm −

1
M

M∑

n=1
εn

)2

→ E{(εm − E{εm})2}

(4.46)

almost surely as M → ∞, due to the law of large numbers (see
Lemma B.12 on p. 564). The inequality in (4.46) follows from set-
ting c1 = 1

M

∑M
n=1 εn, which minimizes the expression with respect to c1.

The last expression in (4.46) is identified as the variance of an arbitrary
element εm. The variance is non-zero for any random variable, thus R
and R1 are also asymptotically linearly independent, almost surely.

This example shows that small random perturbations are sufficient
to satisfy the asymptotic definition in (4.41). In practice, the correlation
matrices of an arbitrary UE can be viewed as realizations from an
underlying continuous random distribution. For example, in our simula-
tions, it is the random UE location along with the channel model that
randomly generates the correlation matrices. Under such cases, the cor-
relation matrices of the UEs will be almost surely linearly independent,
while the probability of getting linearly dependent matrices is zero.11
In spatially correlated fading, two correlation matrices are linearly in-
dependent unless the received signals from the corresponding UEs have

11The principle is the same as if we would generate L i.i.d. random vectors
x1, . . . ,xL ∼ CN (0N , IN ). One can then show that the vectors will be linearly
independent almost surely when L < N .
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an angular distribution that is identical and a power distribution over
these angles that is also identical. In summary, we conclude that all
practical collections of correlation matrices are linearly independent.

Spatial Orthogonality

Another measure of the difference between spatial correlation matrices
is spatial orthogonality.

Definition 4.2 (Orthogonal correlation matrices). Two correlation matri-
ces R1,R2 ∈ CM×M are spatially orthogonal if

tr (R1R2) = 0 (4.47)

which also implies that R1R2 = 0M×M . We further say that R1 and
R2 asymptotically spatially orthogonal if

1
M

tr (R1R2)→ 0 as M →∞. (4.48)

The definition of asymptotically spatially orthogonal matrices in
(4.48) implies that the common subspace of the matrices has a dimen-
sion and eigenvalues that are constant, or grow sublinearly with M .
This is a less restrictive condition than in the definition of spatially
orthogonal matrices in (4.47), where there can be no common sub-
space. However, both spatial orthogonality conditions are much stronger
than the linear independence conditions, since they imply that both
correlation matrices are strongly rank-deficient. For example, R and
R1 in (4.45) are only orthogonal if ε1 = . . . = εM = 0, which makes
R = 0M×M . In spatially correlated fading, it was shown in [7, 363] that
two correlation matrices become asymptotically spatially orthogonal if
the BS is equipped with a ULA and the channels from the two UEs have
non-overlapping supports of their angular distributions. However, the
measurements in [121] indicate that such angular separation is unlikely
to occur in practice, at least at the frequencies used in the coverage tier
of cellular networks. Angular separability is, however, more likely to
arise in hotspots operating at mmWave frequencies [275, 8].
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4.4.2 Asymptotic Insights

We begin the asymptotic analysis by considering MR combining and pre-
coding, for which closed-form expressions were presented in Corollary 4.5
and Corollary 4.7, respectively.

Theorem 4.10 (MR combining). Under Assumption 1, if MR combining
with vjk = ĥjjk is used, it follows that SINRUL

jk →∞ as Mj →∞ if Rj
jk

is asymptotically spatially orthogonal to Rj
li for all (l, i) ∈ Pjk \ (j, k).

If this is not the case, then, as Mj →∞, it follows that

SINRUL
jk −

p2
jktr

(
Rj
jkΨ

j
jkR

j
jk

)

∑

(l,i)∈Pjk\(j,k)
p2
li

∣∣∣tr
(
Rj
liΨ

j
jkR

j
jk

)∣∣∣
2

tr
(
Rj
jkΨ

j
jkR

j
jk

)

︸ ︷︷ ︸
Coherent interference

→ 0. (4.49)

Proof. The proof is available in Appendix C.3.10 on p. 607.

Theorem 4.11 (MR precoding). Under Assumption 1, if MR precod-
ing with wjk = ĥjjk/

√
E{‖ĥjjk‖2} is used for all UEs, it follows that

SINRDL
jk → ∞ as M1 = . . . = ML → ∞ if Rl

jk and Rl
li are asymptoti-

cally spatially orthogonal for all (l, i) ∈ Pjk \ (j, k). If this is not the
case, then as M1 = . . . = ML →∞ it follows that

SINRDL
jk −

ρjktr
(
Rj
jkΨ

j
jkR

j
jk

)

∑

(l,i)∈Pjk\(j,k)
ρli

∣∣∣tr
(
Rl
jkΨl

liRl
li

)∣∣∣
2

tr
(
Rl
liΨl

liRl
li

)

︸ ︷︷ ︸
Coherent interference

→ 0. (4.50)

Proof. The proof is available in Appendix C.3.10 on p. 607.

These theorems show that the UL and DL SINRs achieved by MR
asymptotically approach the simplified expressions in (4.49) and (4.50),
respectively, where the noise and non-coherent interference terms are not
present. This does not mean that the “missing” terms go asymptotically
to zero, but that they are negligibly small compared to the signal term
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and the coherent interference from the UEs that utilized the same pilot
sequence, both of which grow proportionally toM . This is a consequence
of pilot contamination that makes the estimates of these UEs’ channels
correlated with the MR vector.

In the special case when the desired UE has a correlation matrix that
is asymptotically spatially orthogonal to all the pilot-contaminating
UEs’ correlation matrices, the SINR will instead grow without bound.
As discussed above, this is a very strong condition that is unlikely
to hold at the cellular frequencies used in the coverage tier (recall
Figure 1.2) [121], but there are theoretical channel models that can
give rise to such low-rank effects [7, 363], thus one should always be
careful when exploring the asymptotic behaviors. Even with full-rank
correlation matrices, by allocating the pilot sequences in such a way that
the pilot-sharing UEs have rather different support, the asymptotic SE
limit with MR can be increased and this should be taken into account
when assigning pilot sequences to the UEs [363, 7, 192].

Apart from the removal of some of the interference/noise terms,
the asymptotic formulas have the same characteristics as before. The
expressions are particularly clean in the case of uncorrelated fading,
where (4.49) and (4.50) become

SINRUL
jk →

(pjkβjjk)2τpψjk
∑

(l,i)∈Pjk\(j,k)
(pliβjli)2τpψjk

=
(pjkβjjk)2

∑
(l,i)∈Pjk\(j,k)

(pliβjli)2
(4.51)

SINRDL
jk →

ρjkpjk(βjjk)2τpψjk∑
(l,i)∈Pjk\(j,k)

ρlipjk(βljk)2τpψli
=

ρjk(βjjk)2ψjk∑
(l,i)∈Pjk\(j,k)

ρli(βljk)2ψli
.

(4.52)

The values given by these asymptotic limits depend on the ratio between
the signal power and interference power, while the exact values of these
terms are unimportant since the noise term vanishes asymptotically. It
is desirable to make βjli/β

j
jk small in the UL, which corresponds to the

interfering UE having a relatively weak channel to BS j. Similarly, it is
desirable to make βljk/β

j
jk small in the DL, which corresponds to the

interfering BS having a weak channel to UE k in cell j. Notice that it
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is possible that one of these ratios is small, while the other one is large.
These asymptotic insights can be utilized as a heuristic to assign pilots
to the UEs.

Based on the asymptotic results with MR and the fact that only co-
herent interference caused by pilot contamination remains, one might sus-
pect that the SE has a finite limit when using any combining/precoding
scheme in a scenario with pilot contamination. To investigate if this
is the case, let us consider the “optimal” combining scheme, namely
M-MMSE.

Theorem 4.12 (M-MMSE combining). If BS j uses M-MMSE combining
with MMSE channel estimation, then the UL SE of UE k in cell j
grows without bound as Mj → ∞, if Assumption 1 holds and the
correlation matrix Rj

jk is asymptotically linearly independent of the set
of correlation matrices Rj

li with (l, i) ∈ Pjk \ (j, k).

Proof. The rigorous proof of this result is quite involved and therefore
we will only validated it numerically. The interested reader can find the
proof in [43].

This theorem proves that the UL SE of a UE grows without bound as
Mj →∞ when M-MMSE combining is used, which is in sharp contrast
to the case of MR combining. The fact that the noise and non-coherent
interference vanish asymptotically is expected, as this was also the case
with MR. The impact of coherent interference vanishes if the spatial
correlation matrices are asymptotically linearly independent. This is
a mild condition that is generally satisfied in practice (as previously
explained), but not in the special case of uncorrelated Rayleigh fading
that was studied in [208] and many following papers. Asymptotic analysis
that is carried out with uncorrelated fading is bound to give overly
pessimistic results, and should thus be handled with care.

The reason that the BS can reject coherent interference from UEs
that caused pilot contamination is that the MMSE estimated channel
vectors, despite being correlated, are linearly independent when the
correlation matrices are linearly independent. More precisely, Theo-
rem 3.1 on p. 249 gives the channel estimates ĥjjk = √pjkRj

jkΨ
j
jky

p
jjk
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(a) Channel estimates of two pilot-contaminating UEs
with linearly independent correlation matrices.
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by       for                           ĥj
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ĥj
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vjk Orthogonal to estimates 
for all contaminating UEs

(b) Channel estimates of multiple pilot-contaminating
UEs with linearly independent correlation matrices.

Figure 4.23: Geometric illustration of the linearly independent channel estimates,
for UEs that reuse the same pilots but have linearly independent spatial correlation
matrices. The indicated combining vector vjk rejects the coherent interference that is
received along the interfering channel estimates, while a non-zero part of the desired
signal remains.

and ĥjli = √pliRj
liΨ

j
jky

p
jjk for any (l, i) ∈ Pjk \ (j, k). This implies that

the difference

ĥjjk − cĥ
j
li =

(√
pjkRj

jk − c
√
pliRj

li

)
Ψj
jky

p
jjk (4.53)

is only zero for some c ∈ R if Rj
jk and Rj

li are linearly dependent. This
principle is illustrated geometrically in Figure 4.23. The key insight is
that, for linearly independent channel estimates, we can find a direction
of the combining vector vjk that is orthogonal to the channel estimates
of the contaminating UEs (i.e., vH

jkĥ
j
li = 0) and have a non-zero inner

product vH
jkĥ

j
jk with the channel estimate of the desired UE. By using

this (suboptimal) combining vector, or the “optimal” M-MMSE com-
bining, we can always reject the coherent interference. If the correlation
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matrices are also asymptotically linearly independent, the combining
vector will also provide an array gain that makes the SINR grow un-
boundedly. This is why Theorem 4.12 requires asymptotically linearly
independent correlation matrices.

A very similar asymptotic behavior applies to the DL SE when using
M-MMSE precoding, which is logical due to the UL-DL duality.

Theorem 4.13 (M-MMSE precoding). If all BSs use M-MMSE precoding
with MMSE channel estimation, then the DL SE of UE k in cell j grows
without bound as M1 = . . . = ML →∞, if Assumption 1 holds and the
correlation matrices Rj

li, for (l, i) ∈ Pjk, are all asymptotically linearly
independent.

Proof. The rigorous proof of this result is quite involved and therefore
we will only validated it numerically. The interested reader can find the
proof in [43].

The asymptotic results presented above rely on the use of MMSE
channel estimation, which requires knowledge of the spatial correlation
matrices at the BSs. Methods to estimate the correlation matrices were
discussed earlier in Section 3.3.3 on p. 260.

Asymptotic SE with EW-MMSE and LS Estimation

As discussed in Section 3.4.1 on p. 265, an alternative to the MMSE
estimator is the EW-MMSE estimator in Corollary 3.4, which does not
require full knowledge of the spatial correlation matrices. It utilizes only
the main diagonals of Rj

li, which can be estimated efficiently, as done in
(3.26), by using a small number of samples that does not need to grow
withMj [57, 299]. In [43], it is proved that the SE can grow unboundedly
with the number of antennas also when using the EW-MMSE estimator.
To reach this result, it is required that the diagonals of the correlation
matrices Rj

l′i′ with (l′, i′) ∈ Pli (between pilot-sharing UEs) are known
and asymptotic linearly independent. This condition is likely to hold in
practice, as indicated by the measurements in [122].

If also the diagonals of the spatial correlation matrices Rj
li are

unknown or unreliable (e.g., due to rapid changes in the UE scheduling
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in other cells), it is necessary to consider the LS estimator in (3.35)
that does not require any prior statistical information. In this case, the
channel estimates of the pilot contaminating UEs are parallel vectors
that only differ in the scaling. It appears to be challenging to reject
coherent interference in this case, but one can always let the pilot-sharing
UEs take turns in being active. This removes the pilot contamination
and thus the coherent interference disappears, but it also multiplies the
SE with a pre-log factor proportional to 1/L. Hence, in a large network
with a practical number of antennas, it is not an attractive solution.

Remark 4.3 (Pilot contamination precoding). Suppose the BSs are al-
lowed to cooperate, in a coherent joint transmission mode, where the
signal to each UE is sent from all BSs. There is then a method called pi-
lot contamination precoding (or large-scale fading precoding/decoding)
that can reject the coherent interference in the asymptotic regime [23,
191, 6] and achieve unbounded SE under pilot contamination. Since
each UE is served by multiple spatially separated BSs in this setup, the
correlation matrix of the joint channel from all BSs is strongly spatially
correlated. Moreover, the correlation matrices of the pilot-sharing UEs
are likely to be linearly independent, which is also a requirement for
the method to work [43]. Hence, pilot contamination precoding relies
on the same basic properties as the asymptotic analysis provided above.
The drawback with pilot contamination precoding, as compared to
M-MMSE combining/precoding, is that all BSs need to process the
data signals of all UEs, which might not be practically feasible.

4.4.3 Asymptotic Behavior with Strong Interference

To illustrate the asymptotic behavior, this example considers the specific
UL scenario in Figure 4.24, where the interference is particularly strong.
There are L = 2 BSs and K = 2 UEs per cell. Both UEs are located
at a distance of 140 m from their serving BS and there is only a 3.6◦
difference in the angles seen from a BS. The setup is symmetric as
illustrated in the figure. There are two pilot sequences, each being
reused in every cell by the UE with the same index. The transmit
powers and channel propagation model are the same as in the running
example, defined in Section 4.1.3, except that we neglect the shadow



348 Spectral Efficiency

200 m

200 m

3.6 degrees14
0 m

UE 1, cell 1
UE 2, cell 1

BS 1

BS 2

UE 2, cell 2
UE 1, cell 2

Figure 4.24: The two-cell setup with two UEs per cell that is used to illustrate the
asymptotic behaviors of Massive MIMO.

fading. In particular, the average SNR pjktr(Rl
jk)/(Mlσ

2
UL) is −2dB

for the serving BS (l = j) and −2.3 dB for the other BS (l 6= j).
We begin by considering the local scattering model with Gaussian

angular distribution and ASD σϕ = 10◦, which is substantially larger
than the angular difference between the UEs. The UL sum SE per cell
is given in Figure 4.25, where the horizontal axis shows the number of
BS antennas M = M1 = M2, using logarithmic scale. We consider M-
MMSE, S-MMSE, RZF, ZF, and MR combining. These schemes provide
approximately the same SE when M = 10, but there are substantial
differences for larger values ofM . The SE with M-MMSE grows without
bound, which is in line with Theorem 4.12. The slope of the curve
increases with M and approaches a τu

τc
log2(M) scaling per UE. The

SEs with all other combining schemes approach finite asymptotic limits,
due to their inability to reject the coherent interference from the pilot-
contaminating UE in the other cell. RZF, ZF, and MR seem to have
the same limit, while S-MMSE has a slightly higher limit since the
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Figure 4.25: The UL sum SE per cell for the setup in Figure 4.24, as a function
of the number of BS antennas (notice the logarithmic scale). The local scattering
model is considered with Gaussian angular distribution and ASD σϕ = 10◦.

estimation error correlation matrices are taken into account. In this
example, the difference between M-MMSE and the other schemes is
large already at M = 100, while the divergence in SE can appear at
substantially higher antenna numbers when the coherent interference is
weaker (as it would be in the running example).

The behavioral difference is not limited to scenarios with strong spa-
tial channel correlation. To illustrate this fact, we change channel model
to uncorrelated Rayleigh fading that is perturbed by some mild large-
scale fading variations over the antenna arrays; that is, Rj

li = βjliD
j
li,

where Dj
li is a diagonal matrix with the mth diagonal element [Dj

li]mm
being independently distributed as 10 log10([Dj

li]mm) ∼ N (0, σ2
variation).

This large-scale fading variations are motivated by the NLoS measure-
ments reported in [122], which show that there are 4 dB differences in
received signal power over the antennas in a ULA. Figure 4.26 shows the
UL sum SE per cell withM = 200 antennas and varying standard devia-
tion σvariation ∈ [0, 4]. M-MMSE gives an SE similar to the other schemes
when there are no large-scale fading variations, but the difference in-
creases rapidly with the standard deviation. The reason is that the
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Figure 4.26: The UL sum SE per cell for the setup in Figure 4.24 with M = 200
antennas and uncorrelated fading with large-scale fading variations over the array.
The standard deviation σvariation is varied along the horizontal axis.

correlation matrices become asymptotically linearly independent when
the large-scale fading variations are introduced. The more different the
matrices are, the smaller is the loss in signal power from the interference
rejection carried out by M-MMSE, and the larger the SE becomes. The
SE also increases when using other schemes than M-MMSE, since the
random variations in the correlation matrices make the channels more
likely to be spatially separated. Such spatial correlation is beneficial
irrespective of which scheme that is used, but it is only M-MMSE that
utilizes it to reject coherent interference. Hence, the performance gap
between M-MMSE and the other schemes is substantial for M = 200
and will continue to grow as M → ∞, since the other schemes have
finite asymptotic limits.
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4.5 Summary of Key Points in Section 4

• SE expressions for the UL and DL were derived in this section
and can be computed numerically for any channel model.
Spatial channel correlation can have a positive impact on
the SE since most UEs cause less interference to each other.
However, there are also larger variations in SE since UEs that
happen to have similar spatial correlation matrices interfere
more with each other.

• The BSs should use the same vectors for UL receive combin-
ing and DL transmit precoding, motivated by the UL-DL
duality. The M-MMSE scheme provides the highest SE and
requires the highest computational complexity, while the
MR scheme has the lowest complexity and SE. The RZF
scheme provides a good SE-complexity tradeoff. The chan-
nel estimates provided by the low-complexity EW-MMSE
estimator are sufficient for these schemes to work well, thus
high-complexity channel estimators are not needed.

• Different power allocations are needed in UL and DL since
the signal and interference levels of a UE can be very different.
This is further studied in Section 7.1 on p. 452.

• The received signal power increases linearly with the number
of BS antennas M , thanks to coherent signal processing.
This happens even with pilot contamination. However, pilot
contamination gives rise to coherent interference that grows
with M , unless this interference is suppressed by using M-
MMSE combining/precoding. The coherence interference is
in addition to the conventional non-coherent interference
that is unaffected by M . The impact of pilot contamination
can be made negligible if the pilots are not reused in every
cell, which leaves an increased pilot overhead as the main
practical impact of pilot contamination.
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• The SINRs increase with the pilot length τp and the pre-log
factors decrease with τp. Thus, it is non-trivial to find the
pilot length that maximizes the SE.

• The DL transmission can be performed without DL channel
estimation, by relying only on channel hardening. However,
all precoding schemes, except MR, can benefit substantially
from estimating the precoded channel from the received DL
data transmission. The accuracy increases with the length
of the coherence block.

• The SE always grows with the number of BS antennas. In
the cases of practical interest, there is no upper SE limit
when using M-MMSE, despite the common belief that a
fundamental upper limit exists. This holds with either MMSE
or EW-MMSE channel estimation since the noise and all
types of interference are rejected and their impact vanishes
asymptotically. Spatial correlation enables the BS to reject
the coherent interference. Other schemes (e.g., RZF and MR)
have asymptotic upper SE limits determined by the coherent
interference from pilot contamination, since only the impact
of noise and non-coherent interference vanish.



5
Energy Efficiency

In this section, we analyze the energy efficiency (EE) of Massive MIMO
based on a realistic circuit power (CP) consumption model. Before
looking into this, we explain in Section 5.1 why power consumption
(PC) is a major concern for future cellular networks. In Section 5.2, we
show that Massive MIMO can potentially improve the area throughput
while providing substantial power savings. The asymptotic behavior of
the transmit power when the number of BS antennas grows towards
infinity is also studied and a power-scaling law is established, which
proves how quickly the transmit power can be reduced with the number
of antennas while achieving a non-zero asymptotic SE. Section 5.3
formally introduces the EE metric and provides basic insights into the
EE-SE tradeoff, as a function of the key system parameters, such as
the number of BS antennas and UEs. A tractable and realistic CP
model for Massive MIMO networks is developed in Section 5.4. This
model is used in Section 5.5 to examine the EE-throughput tradeoff of
Massive MIMO, and also in Section 5.6, to design a cellular network
that achieves maximal EE. Finally, the key points are summarized in
Section 5.7.

353
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Figure 5.1: Breakdown of power consumed by cellular networks [138].

5.1 Motivation

As mentioned in Section 1.1.1 on p. 163, if the annual traffic growth
rate of cellular networks continues to be in the range of 41%–59%, the
area throughput will have to increase by a factor of 1000 over the next
15–20 years [271]. If no active countermeasures are taken, the solution
to the “1000× data challenge” will increase the PC prohibitively. This
is because current networks are based on a rigid central infrastructure,
that is powered by the electric grid and designed to maximize the
throughput and the traffic load that each cell can handle. The PC
is mainly determined by the peak throughput and varies very little
with the actual throughput of the cell. This is problematic since the
number of active UEs in a cell can change rapidly due to changes in user
behaviors and the bursty nature of packet transmission (see Section 7.2.3
on p. 479 for further discussion). The measurements reported in [27]
show that the daily maximum network load is 2–10 times higher than
the daily minimum load. Hence, a lot of energy is wasted at the BSs in
non-peak hours.

A quite remarkable effort has been devoted to reducing the PC of
UEs, in order to enhance their battery lifetime. Academia and industry
alike have recently shifted their attention towards the BSs. According
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Figure 5.2: Percentage of power consumed by different components of a coverage
tier BS [140].

to figures from Vodafone [138] shown in Figure 5.1, BSs account for
almost 60% of the total power consumed by a cellular network, while
20% is consumed by mobile switching equipment, and around 15%
by the core infrastructure. The rest is consumed by data centers and
retail/offices. The total power consumed by a BS is composed of fixed
(traffic-independent) and variable (traffic-dependent) parts. Figure 5.2
breaks down how different parts of a BS in the coverage tier contribute
to the total PC [140]. The fixed part, including control signaling and
power supply, accounts for around one quarter of the total consumed
power. This amount is not efficiently used during non-peak traffic hours
or, even worse, it is completely wasted when no UE is active within the
coverage area of a BS (as frequently happens in rural areas). The most
significant portion of power is consumed in the power amplification
process. Shockingly, 80%–95% of this power is dissipated as heat in the
power amplifiers (PAs), since the total efficiency of currently deployed
PAs is generally in the range of 5%–20% (depending on the commu-
nication standard and the equipment’s condition). This is due to the
fact that the modulation schemes used in contemporary communication
standards, such as LTE, are characterized by strongly varying signal
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envelopes with peak-to-average power ratios that exceed 10 dB. To avoid
distortions of the transmitted signals, the PAs have to operate well
below saturation.

Massive MIMO aims at evolving the coverage tier BSs by using arrays
with a hundred or more antennas, each transmitting with a relatively
low power. This allows for coherent multiuser MIMO transmission with
tens of UEs being spatially multiplexed in both UL and DL of each cell.
The area throughput is improved by the multiplexing gain. However,
the throughput gains provided by Massive MIMO come from deploying
more hardware (i.e., multiple RF chains per BS) and digital signal
processing (i.e., SDMA combining/precoding) which, in turn, increase
the CP per BS. Hence, the overall EE of the network, defined later as
“how much energy it takes to achieve a certain amount of work”, can be
optimized only if these benefits and costs are properly balanced. The
aim of Section 5 is to explore the potential of Massive MIMO to improve
the network-wide EE. Before looking into this, we show in Section 5.2
that the array gain can be utilized to reduce the transmit power.

Remark 5.1 (A brief look at the hotspot tier). Hotspot BSs—providing
additional capacity to small areas within the coverage of the coverage
tier BSs—have a big role to play in the years to come (see Section 1.1.1
on p. 163), not only for increasing the area throughput but also for
reducing the transmit power, by shortening the distances between UEs
and their serving BSs. However, this comes at the price of deploying
a larger amount of hardware and network infrastructure, which could
substantially increase the network’s PC. A possible solution is to equip
hotspot BSs with mechanisms that monitor the traffic load and save
power by deciding whether to turn on or off certain components [24, 351].
These techniques are promising for reducing the consumed power of the
hotspot tier, without sacrificing the area throughput, but they are not
suitable for the coverage tier (which is the main focus of this monograph)
since they would inevitably degrade the coverage and mobility support.
This is why most of the research activities for the coverage tier aim at
making the consumed power fully proportional to the network load, to
avoid the need for dynamically turning anything on or off.
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5.2 Transmit Power Consumption

A metric that is used to measure the transmit power consumed by a
wireless network is the area transmit power (ATP), which is defined as
the network-average power usage for data transmission per unit area.
This metric is measured in W/km2:

ATP = transmit power [W/cell] ·D [cells/km2] (5.1)

where D is the average cell density, as defined in (1.1). Consider the
DL of a Massive MIMO network with L cells. BS j communicates
with Kj UEs. As described in Section 4.3 on p. 316, BS j uses the
precoding vector wjk ∈ CMj to transmit the data signal ςjk ∼ NC(0, ρjk)
intended for UE k in cell j. Since the precoding vector is normalized
as E{‖wjk‖2} = 1, the transmit power allocated to this UE is equal to
the signal variance ρjk. The ATP of BS j is thus given by

ATPDL
j = D

Kj∑

k=1
ρjk. (5.2)

The corresponding UL expression is obtained if ρjk is replaced with pjk.
To quantitively evaluate ATPDL

j , we consider the running example
defined in Section 4.1.3 on p. 288 with pilot reuse f = 1, K = 10
UEs in each cell and a DL transmit power of 20 dBm per UE, which
corresponds to ρjk = 100mW ∀j, k. Then, the total DL transmit power
per BS is 30 dBm. Each BS covers a square area of 0.25 km× 0.25 km
and is equipped with the same number of antennas M . The ATP of
BS j is ATPDL

j = 16W/km2, which is smaller than in current LTE
networks of a factor 15 (cf. Remark 4.1 on p. 291). However, in order to
be meaningful, the ATP needs to be complemented by a quality metric;
for example, the area throughput. Table 5.1 summarizes the average DL
sum throughput per cell over a 20MHz channel. The results are obtained
using the SE values of Figure 4.18. In the case of M = 100, we see that
the DL throughput can be as large as 482Mbit/s/cell with MR and
1053Mbit/s/cell with M-MMSE, which is 8–16 times larger than in LTE
(cf. Remark 4.1 on p. 291). These per-cell throughputs correspond to
area throughputs of 7.72Gbit/s/km2 and 16.8Gbit/s/km2, respectively.
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Scheme M = 10 M = 50 M = 100
M-MMSE 243Mbit/s 795Mbit/s 1053Mbit/s

RZF 217Mbit/s 648Mbit/s 832Mbit/s
MR 118Mbit/s 345Mbit/s 482Mbit/s

Table 5.1: Average DL throughput per cell over a 20MHz channel for K = 10 with
M-MMSE, RZF, and MR precoding. The results follow from Figure 4.18 and are
obtained for a DL ATP of 16W/km2.

In summary, the above analysis shows that, for the considered
scenario and a sufficiently large number of BS antennas, Massive MIMO
can achieve more than an order-of-magnitude higher area throughput
than current networks, while also providing more than an order-of-
magnitude ATP savings. Notice that the division of the total transmit
power amongM antennas results into a low transmit power per antenna.
With M = 100 and a total DL transmit power of 1W, we have only
10mW per antenna in the considered scenario. This allows replacing
the expensive high-power PAs used in current cellular networks (that
consume most of the power in a BS) by hundreds of low-cost low-
power PAs with output power in the mW range. With a sufficiently low
power per antenna, we might not even need to amplify the signal by a
dedicated PA, but feed each antenna directly from a circuit. This can
have very positive effects on the consumed power. It is important to
note that these savings are obtained at the cost of deploying multiple
RF chains per BS and using combining/precoding schemes, whose
computational complexities depend on the number of BS antennas and
UEs (cf. Table 4.1 on p. 287). This, in turn, increases the CP of the
network, as will be quantified in Section 5.4. Therefore, the ATP metric
does not provide the right insights into the net reduction in consumed
power provided by Massive MIMO. This is why we advocate the use
of the EE metric, that will be defined in Section 5.3 and studied in
the remainder of this section, which accounts not only for the transmit
power and throughput, but also for the CP.
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5.2.1 Asymptotic Analysis of Transmit Power

Before delving into the EE and CP analysis, in what follows we briefly
describe an interesting power-scaling result, which establishes how the
SE and transmit power interact as the number of antennas grows. As
in Section 4.4 on p. 335, the analysis is performed in the asymptotic
regime where Mj →∞, while the number of UEs per cell is kept fixed
and the spatial correlation matrices satisfy Assumption 1 on p. 337.
The purpose is to show that, as the number of antennas grows, we can
trade away parts of the array gain for reducing the transmit powers;
in particular, the transmit power can asymptotically go to zero while
approaching a non-zero SE limit. This result provides evidence that
Massive MIMO can operate at very low transmit power levels.

For simplicity, we focus on the DL and consider MR precoding
with wjk = ĥjjk/

√
E{‖ĥjjk‖2}, such that E{‖wjk‖2} = 1. Since other

precoding schemes generally provide larger SE than MR, if we can
establish that the SE of MR approaches a non-zero asymptotic limit,
we expect that the same result holds for other precoding schemes. As
shown in Corollary 4.7 on p. 318, the DL channel capacity of UE k in
cell j with MR precoding is lower bounded by SEDL

jk [bit/s/Hz], given
by

SEDL
jk = τd

τc
log2(1 + SINRDL

jk ) (5.3)

where
SINRDL

jk =

ρjkpjkτptr
(
Rj
jkΨ

j
jkR

j
jk

)

L∑
l=1

Kl∑
i=1

ρli
tr
(
Rl
jk

Rl
li

Ψl
li

Rl
li

)

tr(Rl
li

Ψl
li

Rl
li)

+ ∑
(l,i)∈Pjk\(j,k)

ρli
pjkτp

∣∣tr(Rl
jk

Ψl
li

Rl
li

)∣∣2
tr(Rl

li
Ψl
li

Rl
li)

+ σ2
DL

(5.4)

and Ψj
li was defined in (3.10), and reported below for convenience:

Ψj
li =


 ∑

(l′,i′)∈Pli
pl′i′τpRj

l′i′ + σ2
ULIMj



−1

. (5.5)

Recall that pjk denotes the UL power used for transmitting the pilot
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sequence of length τp whereas ρjk denotes the DL signal power. The
above expressions can be used to obtain the following result.

Lemma 5.1. Consider M = M1 = · · · = ML, pjk = P/M ε1 , and
ρjk = P/M ε2 , where P , P , ε1, ε2 > 0 are constants. If MR precoding
with wjk = ĥjjk/

√
E{‖ĥjjk‖2} is used and Assumption 1 holds, then

SINRDL
jk −

1
M tr

(
Rj
jkR

j
jk

)

∑
(l,i)∈Pjk\(j,k)

(
1
M

tr
(
Rl
jk

Rl
li

))2
1
M

tr(Rl
li

Rl
li)

→ 0 (5.6)

as M →∞ if ε1 + ε2 < 1, while SINRDL
jk → 0 if ε1 + ε2 > 1.

Proof. The proof is given in Appendix C.4.1 on p. 609.

Lemma 5.1 provides a transmit power-scaling law for Massive MIMO
networks. The condition ε1 + ε2 < 1 implies that we can either decrease
both pjk and ρjk roughly as 1/

√
M or decrease one faster than the

other, as long as the product pjkρjk does not decay faster than 1/M .
Under these conditions, the DL SE has a non-zero asymptotic limit and
behaves asymptotically as

τd
τc

log2




1 +
1
M tr

(
Rj
jkR

j
jk

)

∑
(l,i)∈Pjk\(j,k)

(
1
M

tr
(
Rl
jk

Rl
li

))2
1
M

tr(Rl
li

Rl
li)



. (5.7)

The reason why pjk and ρjk play a similar role in the DL is that
the product pjkρjk appears in the numerator of (5.4). Since pjkρjk is
multiplied with tr(Rj

jkΨ
j
jkR

j
jk), which grows proportionally to M , the

numerator will grow without bound as M → ∞ as long as pjkρjkM
diverges. This gives rise to a sort of “squaring effect” that limits to
1/
√
M the fastest rate at which the two transmit powers can be jointly

decreased. In the case of fixed UL pilot powers, the “squaring effect” is
absent and thus the fastest rate at which ρjk can be decreased is 1/M
and not 1/

√
M . If the transmit powers are reduced faster than allowed

by the power-scaling law, the numerator goes asymptotically to zero
and this leads to zero asymptotic SE.
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Figure 5.3: Average DL sum SE per cell as a function of the number of BS antennas
with averaged-normalized MR precoding, P = P = 20 dBm, for ε = 1/2, ε = 1, and
fixed power (i.e., ε = 0). Uncorrelated Rayleigh fading is considered. The data and
pilot signal powers can be reduced both as 1/

√
M (i.e., ε = 1/2) while achieving

almost the same asymptotic DL SE as for fixed power.

Figure 5.3 exemplifies the asymptotic result of Lemma 5.1 for the
running example described in Section 4.1.3 on p. 288 with a UL transmit
power per UE of P = 20dBm and a total DL transmit power of
KP = 30 dBm, for M = 1. Uncorrelated Rayleigh fading is considered.
We assume ε = ε1 = ε2 and consider two different power-scalings for
the transmit powers, namely, ε = 1/2 and ε = 1. The fixed power case
(with P and P being the powers) and the asymptotic limit for ε = 0 are
also indicated. As stated in Lemma 5.1, if pjk and ρjk are decreased as
1/
√
M (i.e., ε = 1/2), we approach a non-zero asymptotic limit. This

limit is almost identical to the fixed power case, though the convergence
is slower. In particular, we obtain 55% of the asymptotic value with
M = 103 and 95% with M = 106. In agreement with Lemma 5.1, the
average DL sum SE vanishes asymptotically when having ε = 1.

In summary, the above analysis gives theoretical evidence that
Massive MIMO may operate at unconventionally low transmit power
levels. In fact, Figure 5.3 shows that with M = 100 the total transmit
power per BS can be reduced from KP = 1W to KP/

√
M = 0.1W,
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while achieving almost the same SE. The division of 0.1W among the 100
antennas implies that the power per antenna is only KP/M3/2 = 1mW.
We stress that the above reduction in transmit power comes at the cost
of using a large number of BS antennas, which, in turn, increases the
CP.

Remark 5.2 (A look at the UL). The DL power-scaling in Lemma 5.1 can
be easily rederived for the UL (starting from Corollary 4.5 on p. 303)
with potential benefits for UEs. In fact, although UEs are rapidly
developing with new advanced functionalities, the battery capacity only
increases at a modest 10% every two years [113, 186]. Since the wireless
data traffic per device grows faster than that [109], this leads to an
increasing gap between the demand for power and the battery capacity
offered. Therefore, although UEs are only marginally responsible for the
PC in cellular networks, Massive MIMO provides potential benefits in
terms of power saving to both operators and UEs. The power-savings are
particularly important in the deployment of sensors and other devices
whose batteries preferably should last for a very long time.

5.3 Definition of Energy Efficiency

In a broad sense, EE refers to how much energy it takes to achieve
a certain amount of work. This general definition applies to all fields
of science, from physics to economics, and wireless communication is
no exception [371]. Unlike many fields wherein the definition of “work”
is straightforward, in a cellular network it is not easy to define what
exactly one unit of “work” is. The network provides connectivity over
a certain area and it transports bits to and from UEs. Users pay not
only for the delivered number of bits but also for the possibility to use
the network anywhere at any time. Moreover, grading the performance
of a cellular network is more challenging than it first appears, because
the performance can be measured in a variety of different ways and
each such performance measure affects the EE metric differently (see
Section 5.4 for further details and also [371]). Among the different
ways to define the EE of a cellular network, one of the most popular
definitions takes inspiration from the definition of SE, that is, “the SE



5.3. Definition of Energy Efficiency 363

of a wireless communication system is the number of bits that can be
reliably transmitted per complex-valued sample” (a formal definition of
the SE was given in Definition 1.2 on p. 167). By replacing “SE” with
“EE” and “complex-valued sample” with “unit of energy”, the following
definition is obtained [371, 157]:

Definition 5.1 (Energy efficiency). The EE of a cellular network is the
number of bits that can be reliably transmitted per unit of energy.

According to the definition above, we define the EE as

EE = Throughput [bit/s/cell]
Power consumption [W/cell] (5.8)

which is measured in bit/Joule and can be seen as a benefit-cost ratio,
where the service quality (throughput) is compared with the associated
costs (power consumption). Hence, it is an indicator of the network’s
bit-delivery efficiency.1 The throughput can be computed using any of
the UL and DL SE expressions provided in Section 4, which character-
ize the performance of Massive MIMO networks operating over large
communication bandwidths (see also Remark 2.3 on p. 225).

Unlike the ATP, the EE metric is affected by changes in the nu-
merator and denominator since both are variable. This means that
some caution is required to avoid incomplete and potentially misleading
conclusions from EE analysis. Particular attention should be paid to
accurately model the PC of the network. Assume for example that the
PC only comprises the transmit power. Lemma 5.1 showed that the
transmit power can be reduced towards zero as 1/

√
M when M →∞

while approaching a non-zero asymptotic DL SE limit. This implies
that the EE would grow without bound as M → ∞. Clearly, this is
misleading and comes from the fact that the transmit power only cap-
tures a part of the overall PC, as illustrated in Figure 5.2. Moreover, we
notice that the transmit power does not represent the effective transmit
power (ETP) needed for transmission since it does not account for the
efficiency of the PA. The efficiency of a PA is defined as the ratio of
output power to input power. When the efficiency is low, a large portion

1The reciprocal of the bit/Joule metric, namely energy consumption per delivered
information bit in Joule/bit, is referred as the power consumption ratio.
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of the input power is dissipated as heat (cf. Section 5.1). To correctly
evaluate the EE, the PC must be computed on the basis of the ETP
(not of the radiated transmit power) and of the CP required for running
the cellular network:

PC︸︷︷︸
Power consumption

= ETP︸ ︷︷ ︸
Effective transmit power

+ CP︸︷︷︸
Circuit power

. (5.9)

A common model for CP is CP = PFIX, where the term PFIX is a
constant quantity, which may account for the fixed power required for
control signaling and load-independent power of baseband processors
and backhaul infrastructure. However, this is not sufficiently accurate
for comparing systems with different hardware setups (e.g., with a
different number of antennas) and varying network loads2 because it
does not account for the power dissipation in the analog hardware and
in the digital signal processing. Therefore, there are many ways in which
an overly simplistic CP model may lead to wrong conclusions. Detailed
CP models are needed to evaluate the power consumed by a practical
network and to identify the non-negligible components. Clearly, the
complexity of this task makes a certain level of idealization unavoidable.
As we will show in Section 5.4, already a fairly simple polynomial CP
model allows for a quite realistic assessment of the CP of Massive
MIMO.

Remark 5.3 (Bandwidth shall not be normalized). A considerable number
of papers on EE analysis have considered misleading EE metrics mea-
sured in bit/Joule/Hz, instead of bit/Joule. Such metrics are obtained
by normalizing the bandwidth, but this is pointless since one cannot
make the EE bandwidth-independent: the transmit power is divided over
the bandwidth while the noise power is proportional to the bandwidth.
An “EE” number measured in bit/Joule/Hz only applies to a system
with exactly the bandwidth that was used to compute the noise power.
In other words, the EE should be computed as the throughput divided
by the consumed power (as defined in (5.8)), not as the SE divided

2Serving a larger number of UEs requires more CP due to the increased compu-
tational complexity of precoding/combining schemes, encoding and decoding as well
as channel estimation.
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by the consumed power. Some published papers have even normalized
the bandwidth but forgotten to change the unit, leading to erroneous
“EE” values that could be one million times smaller than in practice.
As a rule-of-thumb, one should anticipate EE values at the order of
kbit/Joule or Mbit/Joule.

Remark 5.4 (Alternative EE expressions). It is only reasonable to use
the SE as performance metric when transmitting large data packets, for
which the channel capacity can be approached. There exist a multitude
of alternative figures of merit for the performance of cellular networks.
Each of them accounts for specific targets and affects the EE differently
[371]. For example, an alternative definition of the EE makes use of the
goodput [270]; that is, the rate of successful delivery of finite-length data
packets over a communication channel. The computation of the goodput,
however, requires knowledge of the BER, which varies substantially
between UEs and depends on many factors, such as modulation, encod-
ing, and packet size. One way to overcome this issue is to approximate
the BER as 1 − e−SINR [216]. In slow-fading scenarios, outage events
become the major channel impairment and the outage capacity becomes
a suitable metric for measuring the service quality (cf. Remark 2.3 on
p. 225).

5.3.1 Energy-Spectral Efficiency Tradeoff

Section 1.3 on p. 173 showed that the SE of a cell can be increased
by using more transmit power, deploying multiple BS antennas, or
serving multiple UEs per cell. All these approaches inevitably increase
the PC of the network, either directly (by increasing the transmit
power) or indirectly (by using more hardware), and therefore may
potentially reduce the EE. However, this is not necessarily the case.
In fact, there exist operating conditions under which it is possible to
use these techniques to jointly increase SE and EE. To explore this
in more detail, the EE-SE tradeoff is studied next and the impact of
different network parameters and operating conditions are investigated.
For simplicity, we focus on the UL of the two-cell Wyner model (i.e.,
L = 2) illustrated in Figure 1.8 (similar results can be obtained for the
DL) and consider only uncorrelated Rayleigh fading channels over a
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bandwidth B, under the assumption that the BSs are equipped with
M antennas, have perfect channel knowledge, and use MR combining.

Impact of Multiple BS Antennas

Assume that there is only one active UE (i.e., K = 1) in cell 0 and
that no interfering signals come from cell 1. Then, from Lemma 1.7 on
p. 196, an achievable SE of the UE in cell 0 is

SE0 = log2 (1 + (M − 1)SNR0) = log2

(
1 + (M − 1) p

σ2β
0
0

)
(5.10)

where p is the transmit power, σ2 is the noise power, and β0
0 denotes the

average channel gain of the active UE. We have omitted the superscript
“NLoS”, since we do not consider the LoS case here. To evaluate the
impact of M on the EE, we distinguish between two different cases
in the computation of the PC: i) the CP increase due to multiple BS
antennas is neglected; ii) the CP increase is accounted for.

Assume, for the moment, that the CP of cell 0 consists only of the
fixed power PFIX; that is, CP0 = PFIX. Hence, the corresponding EE of
cell 0 is

EE0 =
B log2

(
1 + (M − 1) p

σ2β
0
0
)

1
µp+ PFIX

(5.11)

where B is the bandwidth and 1
µp accounts for the ETP with 0 < µ ≤ 1

being the PA efficiency. For a given SE, denoted as SE0, from (5.10) we
obtain the required transmit power as3

p = (2SE0 − 1)
(M − 1)

σ2

β0
0

(5.12)

which inserted into (5.11) yields

EE0 = B SE0
(2SE0 − 1) ν0

M−1 + PFIX
(5.13)

3In such an interference-free scenario, p is an exponentially increasing function of
SE0, meaning that increasing SE0 is equivalent to increasing the transmit power p.
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Figure 5.4: SE and EE relation in (5.16) for different values of CP = PFIX when
M = 10, B = 100 kHz, σ2/β0

0 = −6dBm, and µ = 0.4. The red dots represent the
points at each curve in which EE0 achieves its maximum.

with
ν0 = σ2

µβ0
0
. (5.14)

The above expression provides the relation between EE and SE for the
UE in cell 0.

Figure 5.4 illustrates the EE versus SE for M = 10, B = 100 kHz,
σ2/β0

0 = −6 dBm, µ = 0.4, and PFIX ∈ {0, 1, 10, 20}W. As we can see,
if PFIX = 0, there is a monotonic decreasing tradeoff between EE and
SE (as predicted by Shannon theory [326]) because (5.13) reduces to

EE0 = B SE0
(2SE0 − 1) ν0

M−1
. (5.15)

In other words, if the CP is not accounted for, an increased SE always
comes at the price of a decreased EE. If, however, PFIX > 0 (as it is in
practice), then EE0 is a unimodal4 function that increases for values of
SE0 such that (2SE0 − 1) ν0

M−1 < PFIX and decreases to zero as SE0
2SE0−1

4A function f(x) is unimodal if, for some value m, it is monotonically increasing
for x ≤ m and monotonically decreasing for x > m.
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when SE0 takes larger values. We can also see from Figure 5.4 that the
EE-SE curve becomes flatter with increasing values of PFIX, such that
the range of SE values for which almost the same EE is achieved gets
larger.

To get some analytical insights into the EE-optimal point, we take
the derivative of EE0 in (5.13) with respect to SE0 and equate it to zero.
We observe that the maximum EE (called EE?) and its corresponding
SE (called SE?) satisfy the following identity:

log2 (EE?) + SE? = log2

(
(M − 1) B

ν0 loge(2)

)
(5.16)

where SE? is such that

SE?
(
2SE? loge(2)

)
=
(
2SE? − 1

)
+ M − 1

ν0
PFIX. (5.17)

The identity (5.16) shows a linear dependence between log2(EE?) and
SE?. This dependence is illustrated by the red tradeoff line in Figure 5.4.
This means that an exponential EE gain may be obtained at the cost
of a linear SE loss. Observe that (5.17) has a unique solution, which
takes the form (see Appendix C.4.2 on p. 610)

SE? =
W
(
(M − 1)PFIX

ν0e
− 1

e

)
+ 1

loge(2) (5.18)

where W (·) is the Lambert function (defined in Appendix B.3 on p. 567)
and e is Euler’s number. Inserting (5.18) into (5.16) yields

EE? = (M − 1)Be
−W
(

(M−1)PFIX
ν0e
− 1
e

)
−1

ν0 loge(2) (5.19)

where we have used the fact that 2−1/ loge(2) = e−1. Equations (5.18)
and (5.19) provide SE? and EE? in closed form and thus allow us to get
insights into how both are affected by the system parameters. From
(5.18), taking into account thatW (x) is an increasing function for x ≥ e,
it turns out that SE? increases withM (as intuitively expected), but also
with PFIX, as shown in Figure 5.4. This can be explained as follows: the
higher PFIX, the higher SE can be afforded before the transmit power
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Figure 5.5: EE and SE relation in (5.16) for different values ofM when PFIX = 10W,
B = 100 kHz, σ2/β0

0 = −6dBm, and µ = 0.4. Both SE? and EE? increase as M
grows large. This erroneously happens if the CP does not account for the additional
power consumed by having multiple antennas. The red dots represent the points at
each curve in which the EE achieves its maximum.

(
2SE0 − 1

) ν0
M−1 in (5.13) becomes a limiting factor for the EE. On the

other hand, EE? in (5.19) decreases with PFIX (as shown in Figure 5.4)
and increases without bound with the number of antennas M . The
impact of M is illustrated in Figure 5.5 for PFIX = 10W, B = 100 kHz,
σ2/β0

0 = −6dBm, and µ = 0.4. As anticipated by the analysis, both
EE and SE increase with M .

The following corollary provides further insights into the scaling
behavior of SE? and EE? with respect to M and PFIX.

Corollary 5.2 (Scaling law with M and/or PFIX). If M or PFIX grow
large, then

SE? ≈ log2 (MPFIX) (5.20)

and

EE? ≈ eB

(1 + e)
log2 (MPFIX)

PFIX
. (5.21)

Proof. The proof is given in Appendix C.4.3 on p. 610.
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Corollary 5.2 shows that SE? increases logarithmically with M

and PFIX. On the other hand, EE? grows logarithmically with M

and is an almost linearly decreasing function of PFIX.5 Therefore,
it seems that an unbounded EE? can be achieved by adding more
and more antennas. This result is due to the simplified model CP0 =
PFIX, which ignores the fact that the CP increases with M in prac-
tice. In other words, there is a cost-performance tradeoff in practi-
cal systems. This tradeoff is particularly important when implement-
ing a multiantenna system because a BS equipped with M antennas
needs M RF chains, each containing many components; for example,
PAs, analog-to-digital converters (ADCs), digital-to-analog convert-
ers (DACs), local oscillators (LOs), filters, in-phase/quadrature (I/Q)
mixers, and OFDM modulation/demodulation. The CP of such an
implementation will be, roughly, M times higher than the CP of a
single-antenna transceiver. In what follows, we thus consider the CP
model

CP0 = PFIX +MPBS (5.22)

where PBS is the power consumed by the circuit components (e.g., ADCs,
DACs, I/Q mixers, LOs, filters, and OFDM modulation/demodulation)
needed for the operation of each BS antenna. Then, (5.13) becomes

EE0 = B
SE0

(2SE0 − 1) ν0
M−1 + PFIX +MPBS

. (5.23)

Figure 5.6 shows the EE versus SE in the same operating condi-
tions as in Figure 5.5, except that now CP0 = PFIX + MPBS with
PBS = 1W. The EE?-SE? tradeoff curve is now a unimodal function
of M : monotonically increasing for M ≤ 10 and monotonically de-
creasing for M > 10. The maximum value is obtained for M = 10.
This is in sharp contrast to the results of Figure 5.5, where the EE?-
SE? tradeoff curve is always increasing with M . This demonstrates
that an accurate modeling of the CP is of paramount importance
when dealing with the design of energy-efficient multiantenna sys-
tems.

5Note that loge(x)/x ≈ loge(A)/x for x ≥ A with A being some large constant.
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Figure 5.6: SE and EE relation in (5.23) for different values ofM when PFIX = 10W,
PBS = 1W, B = 100 kHz, σ2/β0

0 = −6dBm, and µ = 0.4. In contrast to Figure 5.5,
the EE?-SE? tradeoff (red curve) does not grow unboundedly with the number of
antennas. This is because each additional antenna increases the CP by PBS, as it does
in practice. The red dots on each curve represent the points in which EE achieves its
maximum.

Corollary 5.3 (Scaling law withM , PFIX and/or PBS). IfM,PFIX, and/or
PBS grow large, then

SE? ≈ log2 (M(PFIX +MPBS)) (5.24)

and

EE? ≈ eB

(1 + e)
log2 (M(PFIX +MPBS))

(PFIX +MPBS) . (5.25)

Proof. The proof is given in Appendix C.4.4 on p. 611.

From (5.24), we can see that SE? scales logarithmically with M2

(rather than withM as in (5.20)) since higher SE can be afforded before
the transmit power has a detrimental effect on the EE given by (5.23).
In contrast to (5.21), EE? in (5.25) is an almost linearly decreasing
function of MPBS. In summary, increasing the number of antennas
M monotonically improves SE?, which even grows without bound as
M →∞, but the positive effect on EE? vanishes quickly as increasing
M requires more hardware and, thus, higher CP.
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Impact of Multiple UEs

As shown in Sections 1.3.3 and 1.3.4 on p. 193 and p. 204, respec-
tively, increasing the number of simultaneously active UEs by SDMA
transmission is the most efficient way to improve the per-cell SE. Next,
we investigate the potential benefits that SDMA can bring to the EE
by considering the two-cell Wyner model in Figure 1.8 with K single-
antenna UEs in each cell and the relative strength β̄ = β0

1/β
0
0 = β1

0/β
1
1

of the inter-cell interference. Then, if MR combining is used with perfect
channel knowledge at the BS, a UL SE of each UE is

SE0 = log2


1 + M − 1

(K − 1) +Kβ̄ + σ2

pβ0
0


 (5.26)

by using Lemma 1.7 on p. 196. A given SE0 value is thus achieved by

p =
(
M − 1

2SE0 − 1 −Kβ̄ + 1−K
)−1 σ2

β0
0
. (5.27)

The corresponding EE of cell 0 is

EE0 = BKSE0

K
(
M−1

2SE0−1 −Kβ̄ + 1−K
)−1

ν0 + CP0
(5.28)

where ν0 was defined in (5.14) and we have taken into account that the
sum SE in cell 0 is KSE0 and that the total transmit power is 1

µKp.
To account for the additional CP consumed by all the active UEs, we
assume that

CP0 = PFIX +MPBS +KPUE (5.29)

where PUE accounts for the power required by all circuit components
(e.g., DAC, I/Q mixer, filter, and so forth) of each single-antenna UE.

Taking the derivative of EE0 in (5.28) with respect to SE0 and
equating to zero yields the expression

K

(
M − 1

2SE? − 1 −Kβ̄ + 1−K
)−1

ν0 + PFIX +MPBS +KPUE =

= KSE?
(

1−
(

2SE? − 1
M − 1

)
(Kβ̄ − 1 +K)

)−2
ν0 loge(2)
M − 1 2SE? (5.30)
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from which the SE? that maximizes the EE is obtained. Inserting this
expression into (5.28) yields

EE? = B
(
1−

(
2SE?−1
M−1

)
(Kβ̄ − 1 +K)

)−2
ν0 loge(2)
M−1 2SE?

(5.31)

or, equivalently,

log2 (EE?) + SE? − 2 log2

(
1−

(
2SE? − 1
M − 1

)
(Kβ̄ − 1 +K)

)

= log2

(
(M − 1) B

ν0 loge(2)

)
. (5.32)

The expression in (5.32) has a similar form as (5.16), except for the
extra terms due to intra-cell and inter-cell interference. Unlike (5.17),
the solution to (5.30) cannot be provided in closed form, due to the
presence of interference. In what follows, we evaluate numerically how
the relative strength β̄ of the inter-cell interference and the number of
UEs K impact the EE-SE tradeoff. Figure 5.7 shows the EE of cell 0 as a
function of the sum SE with K ∈ {5, 10, 30} and β̄ = −15 dB or −3 dB.
Additionally, we assume that M = 10, B = 100 kHz, σ2/β0

0 = −6 dBm,
µ = 0.4, PFIX = 10W, PBS = 1W, and PUE = 0.5W. Increasing β̄ has
a detrimental effect on both EE and SE, since the inter-cell interference
term Kβ̄ in (5.26) increases linearly with β̄. On the other hand, the
EE?-SE? tradeoff curve is a unimodal function of K (as it is for M ,
cf. Figure 5.6). For the considered setup, the maximum value is obtained
for K = 10. This is because the sum SE is a slowly increasing function
of K in the case of M = 10 (cf. Figure 1.16) while each additional UEs
increases the PC by PUE = 0.5 W. Therefore, the degradation in EE
for a given sum SE increases as K or β̄ grow large.

The previous figure seems to indicate that SDMA cannot improve the
EE due to the increased interference and additional hardware. However,
when studying the impact of K on the sum SE only (cf. Figure 1.17),
we observed that multiple UEs can be served simultaneously without
decreasing the SE per UE if a proportional number of antennas is added
to counteract the increased interference. This leads to an operating
regime with the antenna-UE ratio M/K ≥ c, for some preferably
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Figure 5.7: Sum SE and EE relation in (5.32) for different values of the inter-cell
interference β̄ and the number of UEs K when M = 10, PFIX = 10W, PBS = 1W
and PUE = 0.5W, B = 100 kHz, σ2/β0

0 = −6dBm, and µ = 0.4. Increasing the
strength β̄ of the inter-cell interference has a detrimental effect on both EE and SE.
As observed for M , the EE?-SE? tradeoff does not grow unboundedly with K since
each additional UE increases the CP by PUE.
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large constant c, where we can provide K-fold gains in sum SE by
SDMA. An identical result cannot be achieved for the EE since adding
more antennas not only increases the SE but also the PC through
MPBS. Intuitively, this means that there will exist an optimal pair of
values (M,K) such that the EE attains its maximum. To exemplify this
conclusion, Figure 5.8 shows the EE of cell 0 for different values of the
antenna-UE ratioM/K when K = 10. Unlike the sum SE in Figure 1.17,
which grows monotonically with the antenna-UE ratio M/K, EE? is a
unimodal function of M/K. For the considered setup, it increases up to
M/K = 2 and then slowly decreases as M/K grows larger. In summary,
serving multiple UEs while simultaneously increasing the number of BS
antennas (to compensate for the higher interference) may improve the
EE of the network only when the benefits and costs of deploying more
RF hardware are properly balanced. The EE-optimum configuration of
BS antennas and number of UEs will be evaluated in Section 5.6.

5.4 Circuit Power Consumption Model

In the previous section, we have used the simple two-cell Wyner network
model to show that a PC model accounting for the transmit power
as well as for the CP consumed by the transceiver hardware at the
BS and UEs is necessary to avoid misleading conclusions about the
EE. These are not the only contributions that must be taken into
account to appropriately evaluate the CP of the UL and DL of Massive
MIMO. We will show that we must also consider the power consumed
by digital signal processing, backhaul signaling, encoding, and decoding
[26]. Building on [312, 26, 358, 95, 219, 185], a CP model for a generic
BS j in a Massive MIMO network is:

CPj = PFIX,j︸ ︷︷ ︸
Fixed power

+ PTC,j︸ ︷︷ ︸
Transceiver chains

+ PCE,j︸ ︷︷ ︸
Channel estimation

+ PC/D,j︸ ︷︷ ︸
Coding/Decoding

+ PBH,j︸ ︷︷ ︸
Load-dependent backhaul

+ PSP,j︸ ︷︷ ︸
Signal processing

(5.33)

where PFIX,j was defined before as a constant quantity accounting for
the fixed power required for control signaling and load-independent
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power of backhaul infrastructure and baseband processors. Furthermore,
PTC,j accounts for the power consumed by the transceiver chains, PCE,j
for the channel estimation process (performed once per coherence block),
PC/D,j for the channel encoding and decoding units, PBH,j for the load-
dependent backhaul signaling, and PSP,j for the signal processing at
the BS. Note that neglecting the power consumed by transceiver chains,
channel estimation, precoding, and combining was previously the norm
in multiuser MIMO. More precisely, the small numbers of antennas
and UEs, before Massive MIMO was introduced, were such that the
CP for all those operations was negligible compared to the fixed power.
The CP associated with those operations was modeled for single-cell
systems in [358, 58, 59], while multicell systems were considered in [60].
Inspired by these works, we provide in what follows a tractable and
realistic model for each term in (5.33), as a function of the main system
parameters Mj and Kj . This is achieved by characterizing the hardware
setup using a variety of fixed hardware coefficients, which are kept
generic in the analysis; typical values will be given later and strongly
depend on the actual hardware equipment and the state-of-the-art in
circuit implementation.

Remark 5.5 (Economical efficiency). In this monograph, we are mainly
concerned with the PC and not with the economical expenses such as
deployment cost, site renting, and so forth. However, we stress that
economical expenses can be added into the CP model developed below;
for example, by dividing the cost rate of the network (measured in
$/s) with the energy price (measured in Joule/$) to get a number in
Watt that is an equivalent PC. The main economical expenses are likely
to be proportional to the number of BSs and would thus increase the
load-independent term PFIX,j in (5.33).

5.4.1 Transceiver Chains

As described in [95] and [185], PTC,j of cell j can be quantified as

PTC,j = MjPBS,j + PLO,j︸ ︷︷ ︸
BS circuit components

+ KjPUE,j︸ ︷︷ ︸
UE circuit components

(5.34)



5.4. Circuit Power Consumption Model 377

where PBS,j is the power required to run the circuit components (such as
ADCs, DACs, I/Q mixers, filters, and OFDMmodulation/demodulation)
attached to each antenna at BS j (which has to be multiplied by the
number of antennas Mj) and PLO,j is the power consumed by the
LO.6 The term PUE,j accounts for the power required by all circuit
components (such as ADCs, DACs, I/Q mixer, LO, filters, and OFDM
modulation/demodulation) of each single-antenna UE.

5.4.2 Coding and Decoding

In the DL, BS j applies channel coding and modulation to Kj se-
quences of information symbols and each UE applies some practical
fixed-complexity algorithm for decoding its own received data sequence.
The opposite is done in the UL. The term PC/D,j accounting for these
processes in cell j is thus proportional to the number of information
bits that is transferred [219] and can be quantified as

PC/D,j = (PCOD + PDEC)TRj (5.35)

where TRj stands for the throughput (in bit/s) of cell j, while PCOD
and PDEC are the encoding and decoding powers (in W per bit/s),
respectively. For simplicity, we assume that PCOD and PDEC are the same
in the UL and DL for all UEs in the network, but it is straightforward
to assign them different values. Note also that PCOD and PDEC highly
depend on the employed channel coding technique; for example, in [219,
181], the authors consider a low-density parity-check code and express
PCOD and PDEC as functions of code parameters. The throughput TRj
accounts for the UL and DL of all UEs in cell j and can be obtained using
the SE expressions provided in Section 4 (see (5.43) for an example).

5.4.3 Backhaul

The backhaul is used to transfer UL and DL data between the BS and
the core network, and can be either wired or wireless depending on the

6In general, a single LO is used for frequency synthesis for all BS antennas. This
is why this term is independent of Mj . If multiple LOs are used (e.g., for BSs with
distributed antenna arrays), we can set PLO,j = 0 and include the power consumed
by LOs in PBS,j instead.
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network deployment. The power consumed by the backhaul is commonly
modeled as the sum of two parts [312]: one load-independent and one
load-dependent. The first part was included in PFIX,j and it is typically
the most significant part of the backhaul consumed power (around 80%),
while the load-dependent part of each BS j is proportional to the sum
throughput of its served UEs. Looking jointly at the UL and DL, the
load-dependent backhaul term PBH,j in cell j is computed as

PBH,j = PBT · TRj (5.36)

where PBT is the backhaul traffic power (in W per bit/s), which is, for
simplicity, assumed to be the same for all cells in the network.

5.4.4 Channel Estimation

As discussed in Section 3.1 on p. 244, UL channel estimation plays a
major role in Massive MIMO to make efficient use of a large number of
antennas. All processing for UL channel estimation is carried out locally
at the BS in each coherence block and has a computational cost, which
translates into a consumed power. The UL channel estimation is carried
out using the MMSE estimator developed in Section 3.2 on p. 248
or alternative techniques, namely the EW-MMSE and LS estimators,
defined in Section 3.4.1 on p. 265. The computational complexities of
the above estimators are summarized in Table 3.1 on p. 270, in terms of
number of complex multiplications per UE. To transform these figures
into consumed power, let LBS be the computational efficiency of the
BS measured in [flops/W]7 and recall that a complex multiplication
requires three real floating-point multiplications.8 Since there are B/τc
coherence blocks per second (see Definition 2.2 on p. 219), from Table 3.1
the power consumed by the considered estimators is

PCE,j = 3B
τcLBS

Kj ·





Mjτp +M2
j with MMSE

Mjτp +Mj with EW-MMSE
Mjτp with LS

(5.37)

7Literally, it measures the number of operations per second that can be delivered
per Watt of power consumed.

8Let x = a+ jb and y = c+ jd, then xy = (ac− bd) + j
(
(a+ b)(c+ d)− ac− bd

)
whose computation requires three real multiplications: ac, bd and (a+ b)(c+ d).
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where Kj is the number of UEs in cell j and τp is the pilot sequence
length, typically chosen such that τp ≥ maxlKl. In Massive MIMO,
we have τp in the order of tens, thus EW-MMSE and LS estimation
have approximately the same power consumption. Observe that we
have neglected the complexity of precomputing statistical matrices since
these computations must only be redone when the channel statistics
change. Notice also that (5.37) quantifies only the power consumed
for estimating the intra-cell channels, which is sufficient except when
using M-MMSE. The extra cost of estimating inter-cell channels will be
quantified in Section 5.4.5.

From (5.37), we notice that a power model that is linear in Mj (as
often assumed in other literature) is only valid for the EW-MMSE and LS
estimators. The MMSE estimator consumes power proportionally toM2

j .
This is the price to pay for the improved channel estimation accuracy
(cf. Figure 3.7) and it cannot be neglected for a fair comparison of
different estimation schemes in terms of EE.9 The functional dependence
on the number of UEs is not only due to Kj but also to τp, which scales
linearly with maxlKl (or, in other words, with the maximum UE load).
It follows that the power required by channel acquisition at BS j

increases proportionally to Kj maxlKl. Hence, also a consumed power
model that it is linear in Kj cannot be considered accurate enough,
especially in Massive MIMO where Kj is large.

Note that we have neglected the complexity of DL channel estimation
since its complexity is substantially lower than that of UL channel
estimation; each UE only needs to estimate the precoded scalar channel
from the received data signals (cf. Section 4.3.3 on p. 325).

5.4.5 Receive Combining and Transmit Precoding

We can use the computational complexity analysis from Sections 4.1.2
and 4.3.2 on p. 284 and p. 320, respectively, to compute the power PSP,j
consumed by BS j for receive combining and transmit precoding. This

9Note that, in the special case when all spatial correlation matrices are diagonal
(so that it is optimal to estimate each channel element separately), the computational
complexity of MMSE estimation becomes the same as that of EW-MMSE (see
Section 3.4.1 on p. 265 for further details).
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can be quantified as

PSP,j = PSP−R/T,j︸ ︷︷ ︸
Reception/transmission

+ PUL
SP−C,j︸ ︷︷ ︸

Computing combining

+ PDL
SP−C,j︸ ︷︷ ︸

Computing precoding

(5.38)

where PSP−R/T,j accounts for the total power consumed by UL recep-
tion and DL transmission of data signals (for given combining and
precoding vectors) whereas PUL

SP−C,j and PDL
SP−C,j are the powers re-

quired for the computation of the combining and precoding vectors at
BS j, respectively.

UL Reception and DL Transmission

In the UL with vjk given, the complexity for computing vH
jkyj , for the

τu received UL signals yj and every UE in the cell, is τuMjKj complex
multiplications per coherence block. In the DL with wjk given, the
computation of xj = ∑Kj

k=1 wjkςjk requires a total of τdMjKj complex
multiplications per coherence block. Therefore, we obtain

PSP−R/T,j = 3B
τcLBS

MjKj(τu + τd). (5.39)

Note that the CP for reception and transmission is the same irrespective
of the choice of combining and precoding schemes.

Computation of the Combining/Precoding Vectors

Thanks to the UL-DL duality (see Section 4.3.2 on p. 320), a natural
choice of the precoding vectors is wjk = vjk/‖vjk‖ (except when the
UL and DL are designed very differently). If vjk is given, then the
complexity for computing wjk reduces to first evaluate ‖vjk‖ and then
vjk/‖vjk‖. This costs

PDL
SP−C,j = 4B

τcLBS
MjKj . (5.40)

As shown in Table 4.1 on p. 287, the complexity of computing vjk
largely depends on the receive combining scheme. If MR is used, vjk
is obtained directly from the channel estimates and there is no extra
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complexity, except for the normalization required by the decoding unit.
This cost is Kj divisions per BS, which in total gives

PUL
SP−C,j = 7B

τcLBS
Kj (5.41)

where we have taken into account that a complex division requires seven
real multiplication/division operations.10 Similarly, the consumed power
with RZF is

PUL
SP−C,j = 3B

τcLBS

(
3K2

jMj

2 + 3KjMj

2 +
K3
j −Kj

3 + 7
3Kj

)
. (5.42)

where the last term accounts for divisions and the other terms for
multiplications. Table 5.2 provides the power consumed by all the
combining and precoding schemes considered in this monograph. Note
that in case of M-MMSE combining we have also included the cost for
estimating the inter-cell channels and for correlating the received pilot
signal with the τp −Kj pilot sequences that are only used in other cells.

5.4.6 Comparison of CP with Different Processing Schemes

We will compare the CP consumed with different combining/precoding
schemes by continuing the running example that was defined in Sec-
tion 4.1.3 on p. 288. There are M antennas at each BS and K UEs in
each cell. The values of M and K will be changed and specified in each
figure. The pilot reuse factor is f = 1, such that each pilot sequence con-
sists of τp = K samples. The number of samples per coherence block that
is used for data is τc−τp = 190−K, whereof 1/3 is used for UL and 2/3
for DL. This yields τu = 1

3(τc − τp) and τd = 2
3(τc − τp). We consider UL

and DL transmit powers of 20 dBm per UE (i.e., pjk = ρjk = 100mW).
The Gaussian local scattering with ASD σϕ = 10◦ is used as channel
model. The throughput of cell j for computing the consumed power for
backhaul, encoding, and decoding is obtained using the UL and DL SE
expressions of Section 4. For each scheme and number of antennas, we
use the capacity bound of Theorem 4.1 on p. 276 for the UL and the

10Let x = a + jb and y = c + jd, then x/y = xy∗/|y|2. The computation of
xy∗ requires three real operations whereas two real multiplications are needed for
|y|2 = c2 + d2 and two real divisions are required for computing the ratio.
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Parameter Value set 1 Value set 2
Fixed power: PFIX 10W 5W

Power for BS LO: PLO 0.2W 0.1W
Power per BS antennas: PBS 0.4W 0.2W

Power per UE: PUE 0.2W 0.1W
Power for data encoding: PCOD 0.1W/(Gbit/s) 0.01W/(Gbit/s)
Power for data decoding: PDEC 0.8W/(Gbit/s) 0.08W/(Gbit/s)
BS computational efficiency: LBS 75Gflops/W 750Gflops/W
Power for backhaul traffic: PBT 0.25W/(Gbit/s) 0.025W/(Gbit/s)

Table 5.3: Parameters in the CP model. Two different set of values are exemplified.

one that gives the largest SE between those of Theorem 4.6 on p. 317
and Theorem 4.9 on p. 326 for the DL:

TRj = B

Kj∑

k=1

(
SEUL

jk + max(SEDL
jk ,SEDL

jk )
)
. (5.43)

Two sets of CP parameters are given in Table 5.3. The first set is
inspired by a variety of recent works: baseband power modeling from
[174, 185], backhaul power according to [311], and the computational
efficiencies from [358]. In the future, these parameters will take very
different values that we cannot predict at the time of writing of this
monograph. For the sake of the analysis, in what follows we also consider
a setup in which the transceiver hardware’s PC is reduced by a factor
two whereas the computational efficiencies (which benefit from Moore’s
law) are increased by a factor ten. This leads to the second set of values
in Table 5.3. We stress that these parameters tend to be extremely
hardware-specific and thus may take substantially different values.11
The Matlab code that is available online enables testing of other values.

Figure 5.9 illustrates the total CP per cell for the combined UL and
DL scenario with different combining/precoding schemes. The MMSE
estimator is used for channel estimation to fully exploit the spatial

11IMEC has developed a power model to predict the power consumption of
contemporary and future cellular BSs, which supports a broad range of operating
conditions and BS types, and incorporates hardware technology forecasts. The model
is available at https://www.imec-int.com/en/powermodel as an online web tool.
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Figure 5.9: Total CP per cell of both UL and DL for the running example. The
two sets of CP parameter values reported in Table 5.3 are considered.
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channel correlation. Note that the vertical axis is reported in dBm.
In Figure 5.9a, we consider K = 10 and let M vary from 10 to 200.
The CP increases with M for all schemes and for both value sets. The
highest CP is required by M-MMSE, followed by S-MMSE. For Value
set 1, S-MMSE reduces the CP by 0.5%–25% since inter-cell channel
estimates are not computed. Note, however, that M-MMSE provides
higher SE than S-MMSE. Quantitatively speaking, the CP required by
M-MMSE for M = 100 and K = 10 is 48.16dBm (65.48W) whereas
S-MMSE needs 47.5 dBm (56.35W), which is roughly a 14% reduction.
From Section 4, we know that this CP increase with M-MMSE is
compensated by a 10% higher SE than with S-MMSE in both UL and
DL (cf. Tables 4.3 and 4.5 on p. 295 and p. 332, respectively). For
Value set 2, the CP required by M-MMSE is only 0.1%–7% higher
than with S-MMSE. This is mainly due to the increased computational
efficiency. RZF and ZF consume less CP, since both invert matrices
of dimensions K ×K, rather than M ×M . Compared to M-MMSE,
when M = 100, this reduces the CP by 17% for Value set 1 and by 4%
for Value set 2. MR is characterized by the lowest CP since no matrix
inversions are required. However, the CP reduction compared to RZF
and ZF is marginal for both value sets; MR only provides a substantial
complexity reduction compared to RZF and ZF when the number of
UEs is very large; see Figure 4.3a. In Figure 5.9b, we consider M = 100
and let K vary from 10 to 100. The CP increases with the number of
UEs, but with a smaller slope than when M is changed (especially for
Value set 2). Although the general trends for the two set of values are
the same (e.g., M-MMSE requires the highest CP and MR the lowest),
we see that for Value set 1 the CP required by M-MMSE is 8%–100%
higher than with S-MMSE. This CP increase reduces to 2%–25% CP
for Value set 2.

The CP of all schemes, for the two different sets of parameter values,
M = 100, andK = 10 are summarized in Table 5.4. As we can see, in this
considered setup the CP required by the different schemes is marginally
different. This happens because the CP of the transceiver hardware
dominates over that of signal processing. Moreover, comparisons in
this section are made for given configurations of (M,K), which do not
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Scheme Value set 1 Value set 2
M-MMSE 65.48W 27.42W
S-MMSE 56.35W 26.51W
RZF 54.43W 26.32W
ZF 54.43W 26.32W
MR 53.96W 26.27W

Table 5.4: CP per cell with M = 100 and K = 10 for different schemes and the
two sets of values reported in Table 5.3. The results are summarized from Figure 5.9.
There are only marginal differences in the considered scenario, although the different
schemes are characterized by different computational complexities. This happens
because the CP of the hardware dominates over that of signal processing.

necessarily represent the optimal ones for maximizing the EE of the
network, as we will see later in Section 5.6.

Figure 5.10 shows a bar diagram that shows how different parts
contribute to the CP for M = 100 and K = 10 with the Value set 1
in Table 5.3. Only M-MMSE, RZF, and MR are considered, since the
CPs of S-MMSE and ZF are similar to that of RZF. Note that the
vertical axis is reported in dBm. The CP contributed by the fixed power,
transceiver chains, signal processing for UL reception, DL transmission,
and precoding computation are the same for all schemes. These four
terms contribute as illustrated in Figure 5.10a and require a total of
47.23dBm, which is the majority of the total CP. The largest CP
is required by transceiver chains, followed by the fixed power. The
signal processing required for UL reception and DL transmission of data
consumes around 28.8 dBm, while the smallest part is the computation of
precoding vectors, roughly 7 dBm. The breakdown of the CP required by
the different processing schemes for channel estimation, computation of
receive combining vectors, backhaul, and encoding/decoding is reported
in Figure 5.10b. The CP consumed by intra-cell channel estimation is
approximately 26dBm (440 mW) and independent of the processing
scheme. The CP for computing the receive combining vectors depends
on the scheme and the highest CP is required by M-MMSE, for which
it is approximately 40dBm (10.96 W). Together with the consumed
power by channel estimation, they account for 91% of the CP required
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Figure 5.10: Breakdown of the CP per cell when using the first set of values in
Table 5.3 with M-MMSE, RZF or MR. A setup with K = 10 UEs and M = 100 BS
antennas per cell is considered. Note that the vertical axis is in dBm.
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by M-MMSE for performing the operations considered in Figure 5.10b.
A substantially lower CP would be required by M-MMSE with the
EW-MMSE estimator, which reduces the computational complexity by
45%–90% (cf. Figure 3.8) by not exploiting the correlation between
antenna elements. This, however, impacts the estimation accuracy
(cf. Figure 3.7) for the considered channel model. If RZF is used, then
the CP required for computing combining vectors is around 18.28 dBm
(67 mW), which corresponds to a 99% reduction compared to M-MMSE.
With MR, it is further reduced to 0.09 mW, which is negligible compared
to all other contributions.

Figure 5.11 shows the CP terms with Value set 2 in Table 5.3.
Compared to Figure 5.10a, the CP common to all schemes (accounting
for the fixed power, transceiver chains, and signal processing) is reduced
by 50%. Computing the receive combining vectors with M-MMSE
still represents the most power-consuming operation in Figure 5.11b,
though in this case it requires only 30 dBm rather than 40 dBm, which
corresponds to a 90% reduction. Quantitively speaking, the CP required
for all the operations of Figure 5.11b is roughly 31 dBm with M-MMSE,
21.6 dBm with RZF, and 20 dBm with MR.

In summary, the above analysis shows that the CP model developed
in this section highly depends on the hardware setup (i.e., number of
BS antennas and UEs) and on the choice of the model parameters in
Table 5.3. However, some general observations can be made irrespective
of the specific parameter values. The CP increases faster with M than
with K for all processing schemes. The highest CP is required by M-
MMSE due to the extra cost for estimating the inter-cell channels, and
is followed by S-MMSE. RZF and ZF require lower CP than S-MMSE,
since both invert matrices of dimensions K ×K, rather than M ×M .
MR has the lowest CP since no matrix inversion is required. However,
since the computational efficiency of the signal processing is very high
in modern systems, these differences have a marginal impact on the
total CP, which is roughly the same for all the schemes (cf. Table 5.4 on
p. 386). The transceiver chains contribute to the largest part of the total
CP, followed by the fixed power and then by the channel estimation
(except when using M-MMSE for which the computation of combining
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Figure 5.11: Breakdown of the CP per cell when using the second set of values in
Table 5.3 with M-MMSE, RZF or MR. A setup with K = 10 UEs and M = 100 BS
antennas per cell is considered. Note that the vertical axis is in dBm.
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vectors is higher)—these parts are the same for all processing schemes.
Moreover, the power consumed by backhaul, encoding, and decoding
accounts only for a small fraction of the total CP in Massive MIMO,
where the number of BS antennas is relatively large.

5.5 Tradeoff Between Energy Efficiency and Throughput

We will now examine the tradeoff between EE and throughput, using
the CP model introduced in the previous section and the two sets
of CP values reported in Table 5.3. Unlike the case-study analysis of
Section 5.3.1 wherein the EE-SE tradeoff was considered, we concentrate
on the throughput of the Massive MIMO network to emphasize that
one cannot carry out EE analysis without specifying the bandwidth
(cf. Remark 5.3). We use the running example defined in Section 4.1.3
on p. 288. There are M antennas at each BS and K UEs in each
cell. The values of M and K will be changed and specified in each
figure. The pilot reuse factor is f = 1, such that each pilot sequence
consists of τp = K samples. The number of samples per coherence
block used for UL and DL are τu = 1

3(τc − τp) and τd = 2
3(τc − τp),

respectively. We consider UL and DL transmit powers of 20 dBm per
UE (i.e., pjk = ρjk = 100mW). The Gaussian local scattering with ASD
σϕ = 10◦ is used as channel model. The throughput is obtained as in
(5.43) by using the UL and DL SE expressions of Section 4.

The EE of cell j is computed as

EEj = TRj

ETPj + CPj
(5.44)

where ETPj denotes the ETP of cell j. This term accounts for the power
consumed by the transmission of the pilot sequences as well as of UL
and DL signals:

ETPj = τp
τc

Kj∑

k=1

1
µUE,jk

pjk

︸ ︷︷ ︸
ETP for pilots

+ τu
τc

Kj∑

k=1

1
µUE,jk

pjk

︸ ︷︷ ︸
ETP in the UL

+ 1
µBS,j

τd
τc

Kj∑

k=1
ρjk

︸ ︷︷ ︸
ETP in the DL

(5.45)

where µUE,jk (0 < µUE,jk ≤ 1) is the PA efficiency at UE k in cell j and
µBS,j (0 < µBS,j ≤ 1) is that of BS j. The EE and throughput tradeoff of
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different schemes will be compared by continuing the previous example
of Figure 5.9 with the additional assumption of µUE,jk = 0.4 and µBS,j =
0.5. Notice that we have deliberately chosen a PA efficiency higher than
25% (i.e., higher than in contemporary PAs). This is motivated by the
fact that in Massive MIMO, the low power levels per antenna (in the
mW range, cf. Section 5.2) allow using more efficient PAs.

Figure 5.12 illustrates the EE as a function of the average throughput
per cell with all processing schemes. The different throughput values are
achieved with K = 10 UEs and by letting the number of BS antennas
vary from M = 10 to M = 200, in steps of 10. The two sets in Table 5.3
are considered. We notice that the EE is a unimodal function of the
throughput for all schemes and both sets of CP values. This implies
that we can jointly increase the throughput and EE up to the maximum
EE point, but further increases in throughput can only come at a loss
in EE. The curves are quite smooth around the maximum EE point;
thus, there is a variety of throughput values or, equivalently, numbers
of BS antennas that provide nearly maximum EE. M-MMSE provides
the highest EE for any value of the throughput, followed by S-MMSE.
MR has the lowest performance. This shows that, in the considered
setup, the additional computational complexity of M-MMSE processing
pays off both in terms of SE and EE.

From Figure 5.12a, we can see that the maximal EE value with
M-MMSE is 21.26Mbit/Joule and is achieved at M = 30 for a through-
put of 600Mbit/s/cell, which corresponds to an area throughput of
9.6Gbit/s/km2. For M = 40, the EE is nearly the same and equal to
20.73Mbit/Joule while the area throughput increases to 11Gbit/s/km2.
With S-MMSE, the maximal EE is also obtained with M = 30 but is
reduced by 3.2% and achieved at a 6% lower throughput than with
M-MMSE. RZF and ZF provide similar performance and achieve the
maximal EE of roughly 19Mbit/Joule withM = 30 and a corresponding
area throughput of 8.38Gbit/s/km2. Interestingly, RZF and ZF tend
to perform as M-MMSE and S-MMSE when the throughput increases.
This happens since the higher the throughput, the higher is also the CP,
due to the larger number of antennas. Since the CP grows faster with M-
MMSE and S-MMSE than with RZF and ZF, it counteracts the SE gain
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(a) K = 10 with the first set of values in Table 5.3.
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(b) K = 10 with the second set of values in Table 5.3.

Figure 5.12: EE versus throughput for the running example defined in Section 4.1.3
on p. 288. The hardware parameters are modeled as in Table 5.3. The different values
of throughput are achieved varying M from M = 10 to M = 200, in steps of 10.
Notice that all schemes allow to jointly increase the EE and throughput. M-MMSE
provides the highest EE for any value of throughput.
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of using M-MMSE and S-MMSE (cf. Figure 4.5 on p. 293 for UL). Note
that the EE of ZF deteriorates quickly for throughput values smaller
than 380 Mbit/s/cell, which are achieved byM ≈ K where ZF is known
to perform badly. MR provides a maximum EE of 10.18Mbit/Joule
with M = 40 and an area throughput of 5.07Gbit/s/km2.

Figure 5.12b is obtained with the second set of values in Table 5.3.
Compared to Figure 5.12a, the EE of all schemes is roughly doubled
(since most of the CP coefficients are reduced by a factor two), but
the general trends are the same. With M-MMSE and S-MMSE, an
EE of 41.52Mbit/Joule and 39.2Mbit/Joule, respectively, is achieved
using M = 30. Table 5.5 reports the EE and area throughout of M-
MMSE, RZF, and MR with K = 10 and M = 40. In summary, the
above analysis shows that different schemes provide slightly different
EE. However, with all of them the EE is a unimodal function of the
throughput and, for the considered scenario, achieves its maximum at
roughly M = 30 or 40 irrespective of the CP parameter values. Note
that these values for M are far from what it is envisioned for Massive
MIMO, but the antenna-UE ratio achieving the maximum EE is on the
order of M/K = 3 or 4 as expected. In what follows, we show that a
larger value for M is obtained if K increases, especially with the more
power-efficient hardware setup.

Figure 5.13 considers the same setup but with K = 20. The through-
put values are obtained for all schemes, except for ZF, by varying M
from 10 to 200, in steps of 10. With ZF, M varies from 20 to 200 since
M must be larger than K. Compared to Figure 5.12, we can see that
increasing the number of UEs per cell may have or not a positive effect
on the EE. Unlike Figure 5.12a, Figure 5.13a shows that, with K = 20
and the first set of CP values, the highest EE is not achieved with
M-MMSE but with S-MMSE. Quantitively speaking, S-MMSE provides
a maximal EE of 22.86 Mbit/Joule at M = 50 for an area throughput
of 15.05Gbit/s/km2. On the other hand, with M-MMSE the maximal
EE is obtained with M = 40 and is 1.75% lower than with S-MMSE.
Interestingly, with the first set of CP values, M-MMSE performs even
worse than RZF and RZF when the throughput increases. This happens
because the CP with M-MMSE is much higher (cf. Figure 5.9b) than
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(a) K = 20 with the first set of CP values in Table 5.3.
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(b) K = 20 with the second set of CP values in Table 5.3.

Figure 5.13: EE versus throughput for the running example defined in Section 4.1.3
on p. 288. The hardware parameters are modeled as in Table 5.3. The different values
of throughput are achieved by varying M from M = 20 to M = 200, in steps of 10.
Compared to results of Figure 5.12, we see that increasing K improves the EE of all
schemes.
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Scheme EE, set 1 EE, set 2 Area throughput
M-MMSE 20.73Mbit/Joule 41.53Mbit/Joule 11Gbit/s/km2

RZF 19.07Mbit/Joule 36.63Mbit/Joule 9.6Gbit/s/km2

MR 10.18Mbit/Joule 19.38Mbit/Joule 5.07Gbit/s/km2

(a) With K = 10 and M = 40 (the results are summarized from Figure 5.12).

Scheme EE, set 1 EE, set 2 Area throughput
M-MMSE 21.27Mbit/Joule 45.5Mbit/Joule 17.82Gbit/s/km2

RZF 21.24Mbit/Joule 40.35Mbit/Joule 15.33Gbit/s/km2

MR 11.04Mbit/Joule 20.7Mbit/Joule 7.84Gbit/s/km2

(b) With K = 20 and M = 60 (the results are summarized from Figure 5.13).

Table 5.5: Maximal EE per cell with the two sets of CP values in Table 5.3 for
M-MMSE, RZF and MR. The corresponding area throughputs are also reported.

with S-MMSE, RZF, and ZF, and thus counteracts the SE gain of using
M-MMSE. Different observations can be made for the second set of
CP values as we can see from Figure 5.13b. In this case, the general
trends are the same of Figure 5.12, where M-MMSE provides the highest
EE and throughput. Moreover, increasing the number of UEs per cell
has a positive effect on the EE of all schemes, which is larger for any
throughput value. Unlike with K = 10 in Figure 5.12b, wherein the
maximal EE was achieved at M = 30 or 40, with K = 20 we see that
M = 50 or 60 provides the highest EE. Table 5.5b summarizes the
results of Figure 5.13 for M-MMSE, RZF, and MR with M = 60.

5.6 Network Design for Maximal Energy Efficiency

In the previous section, we examined the EE of Massive MIMO networks
for a given number of UEs and varying number of BS antennas (or,
equivalently, for a given throughput value per cell). In the following,
we look at the EE from a different perspective: we design the network
from scratch to achieve maximal EE, without a-priori assumptions on
the number of antennas or UEs. We ask the following questions:

1. What is the optimal number of BS antennas?
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2. How many UEs should be served?

3. When should different processing schemes be used?

To answer these questions, we consider the running example, defined in
Section 4.1.3 on p. 288, for the same scenario as in Section 5.5, with M
antennas at each BS and K UEs per cell.

Figure 5.14 illustrates the set of achievable EE values with M-MMSE,
RZF, and MR for different combinations of M and K. We consider K ∈
{10, 20, . . . , 100} andM ∈ {20, 30, . . . , 200}. The first set of CP values
in Table 5.3 is considered. We notice that the EE-surfaces are concave
and a global EE-optimum exists for each scheme. With M-MMSE, a
maximal EE of 20.73 Mbit/Joule is achieved by (M,K) = (40, 20),
which provides an area throughput of 13.71Gbit/s/km2 and a total PC
of 41.35W per cell. With RZF, the EE surface is smoother than with
M-MMSE; thus, there is a variety of pairs (M,K) that provides nearly
optimal EE. The global EE maximum is 20.25 Mbit/Joule, which is only
2.3% higher than with M-MMSE. It is achieved by (M,K) = (90, 30)
resulting in an area throughput of 20.97Gbit/s/km2, which is 53% higher
than with M-MMSE. This is achieved using 64.76W CP per cell, which
is also 56% higher. The intuition behind this result is that, although M-
MMSE is the best from a throughput perspective for any given (M,K),
the CP increases faster with M and K with M-MMSE compared to
RZF due to the higher computational complexity. This discourages the
use of M-MMSE with larger M and K values, where the slightly higher
throughput than with RZF comes with a disproportionally larger CP
that degrades the EE. Hence, M-MMSE achieves its EE-optimum at
a lower throughput value. The price to pay with RZF is the higher
PC per cell, thus having an energy-efficient network does not imply
that the power is low. The EE-optimum with MR provides an EE of
10.63 Mbit/Joule, which is roughly 47% smaller than with M-MMSE
and RZF, and is achieved at (M,K) = (60, 20) for an area throughput
of 7.64Gbit/s/km2 and a PC of 44.9W per cell. The above results are
summarized in Table 5.6a.

Figure 5.15 considers the second set of CP values in Table 5.3. The
EE-surfaces with RZF and MR show similar behaviors as in Figure 5.14.
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Figure 5.14: EE per cell as a function of M and K with M-MMSE, RZF, and MR.
The first set of values in Table 5.3 is used.
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Figure 5.15: EE per cell as a function of M and K with M-MMSE, RZF, and MR.
The second set of values in Table 5.3 is used.
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Scheme (M,K) Maximal EE Area throughput PC
M-MMSE (40, 20) 20.73Mbit/Joule 13.71Gbit/s/km2 41.35W

RZF (90, 30) 20.25Mbit/Joule 20.97Gbit/s/km2 64.76W
MR (60, 20) 10.63Mbit/Joule 7.64Gbit/s/km2 44.9W

(a) With the first set of values in Table 5.3, the results are obtained from Figure 5.14.

Scheme (M,K) Maximal EE Area throughput PC
M-MMSE (60, 20) 44.00Mbit/Joule 17.33Gbit/s/km2 24.62W

RZF (90, 30) 39.33Mbit/Joule 20.97Gbit/s/km2 33.34W
MR (70, 20) 20.14Mbit/Joule 8.3Gbit/s/km2 25.75W

(b) With the second set of values in Table 5.3, the results are obtained from Figure 5.15.

Table 5.6: Maximal EE per cell with the two sets of CP values in Table 5.3 for
M-MMSE, RZF and MR. The corresponding values of area throughput and PC per
cell are also reported. The results are summarized from Figures 5.14 and 5.15.

However, the surface with M-MMSE is substantially smoother than in
Figure 5.14. The EE, area throughput, and PC values of the EE-optimal
operating points for all schemes are summarized in Table 5.6b. The
values of M and K at the EE-optimum points are both increased due
to the reduction in the CP parameters. In particular, the higher com-
putational efficiency encourages the use of more network infrastructure
and spatial multiplexing of more UEs. We notice that M-MMSE still
provides a 17% lower throughput than RZF, while achieving a 12%
higher EE and a 26% PC saving per cell. Compared to the results of
Figure 5.14, it thus follows that M-MMSE becomes a potential solution
for high EE and low PC when more energy-efficient hardware is used.

Interestingly, we observe that all the EE-optimum configurations of
(M,K) fall within the class of Massive MIMO networks, with a number
of antennas in the range of tens and an antenna-UE ratio M/K that
varies between 2 and 3.5 at the different EE-optima. This is noteworthy
since it is the output of a numerical search in which we did not restrict
the system dimensions whatsoever. Notice also that the PCs are within
a realistic range when using any of the schemes.

Remark 5.6 (From numerical to analytical analysis). Numerical results
were used in this section to find the numbers of BS antennas and UEs
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that jointly achieve high EE in the running example. However, we stress
that in some simplified scenarios, the EE maximization problem can
potentially be solved analytically with respect to M and K. Other
system parameters (e.g., the transmit power) can also be optimized.
This approach was taken in [58, 59, 224] for a single-cell Massive MIMO
system using ZF in UL and DL over spatially uncorrelated channels.
Closed-form expressions for the optimal (M,K) and transmit power
were derived, from which valuable insights into the interplay between
the optimization variables, hardware characteristics, and propagation
environment were provided. The UL multicell case was considered in
[60, 266], which determine the optimal M , K, transmit power, cell
density, and pilot reuse factor. The analysis showed that reducing the
cell size is undoubtably the way towards high EE, but the positive
effect of increasing the cell density saturates when the CP dominates
over the transmit power. A further leap in EE can then be achieved by
adding more BS antennas to spatially multiplex UEs in every cell. The
corresponding EE gains come from suppressing intra-cell interference by
the many antennas and by sharing the per-cell CP costs among multiple
UEs. Moreover, the analysis showed that a large pilot reuse factor can
protect against inter-cell interference and can be tailored to guarantee
a certain SE.
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5.7 Summary of Key Points in Section 5

• Higher area throughput on the one hand and less consumed
power on the other are two seemingly contradictory require-
ments for future networks.

• Massive MIMO can potentially achieve a higher area through-
put than current networks while providing substantial ATP
savings. The transmit power can be gradually reduced with
the number of antennas while approaching a non-zero asymp-
totic SE. Therefore, Massive MIMO networks reduce the
transmit power required to achieve a given SE.

• The EE of a cellular network, defined as the number of bits
that can be reliably transmitted per unit of energy (measured
in bit/Joule), is a good performance metric to balance the
throughput and consumed power.

• While increasing the number of antennas has always a pos-
itive effect on the SE, the EE first increases with M , due
to the improved SE, and then decreases with M , due to the
additional hardware that increases the CP.

• Substantial SE gains are achieved by multiplexing K UEs
per cell, if a proportional number of antennas M is used to
counteract the increased interference. A similar result cannot
be achieved for the EE since adding more antennas increases
the SE but also the CP of the network. This means that the
EE attains its maximum at a finite value of the antenna-UE
ratio M/K.

• Realistic CP models are needed to evaluate the PC for differ-
ent numbers of antennas and UEs. The modeling complexity
makes a certain level of idealization unavoidable, but a fairly
accurate polynomial CP model was developed in this section
to account for the dissipation in analog hardware, digital
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signal processing, backhaul signaling, and channel estimation.
The model depends on a variety of fixed parameters that
were kept generic in the analysis. Typical values are given in
Table 5.3. The MR scheme has the lowest CP, while the in-
terference suppressing schemes, such as RZF and M-MMSE,
require higher CP.

• Massive MIMO allows to jointly increase the EE and through-
put, as compared to a system with few antennas. In the
running example, M-MMSE provides the highest EE for any
throughput value only when more energy-efficient hardware
is used. MR achieves the lowest EE. RZF provides a good
tradeoff between EE and throughput.

• A numerical example was used to demonstrate how a cellular
network should be designed for maximal EE. The results
show that a Massive MIMO setup, wherein a large number
of antennas (in the order of a hundred) is used to serve
many tens of UEs, is the EE-optimal solution, even using
contemporary circuit technology.



6
Hardware Efficiency

In this section, we analyze how the use of non-ideal transceiver hardware
affects the SE. The goal is to show that Massive MIMO improves the
hardware efficiency (HE), in the sense that the SE loss from using
hardware components of lesser quality than in conventional systems
is negligible. For example, we will show that one can compensate for
increasing hardware distortion by adding additional BS antennas. Sec-
tion 6.1 provides a brief overview of the non-idealities that exist in
practical transceivers and develops a model that captures the hardware
impairment characteristics that affect the SE, without limiting the
analysis to a particular hardware setup. This model is then used to
generalize the Massive MIMO system model that was used in previous
sections. UL channel estimation with hardware impairments is consid-
ered in Section 6.2, while the achievable SEs are analyzed in Section 6.3.
The improved HE is then established by a hardware-quality scaling law
in Section 6.4, which proves how quickly the hardware quality can be
reduced when increasing the number of antennas if the SE loss should
remain small. The key points are summarized in Section 6.5.

403
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6.1 Transceiver Hardware Impairments

Wireless communication channels are commonly modeled as linear filters
that take an analog input signal from the transmitter and produce a
distorted output signal, which is measured at the receiver in the presence
of additive noise. This classic setup is illustrated in Figure 6.1a. The
discrete-time complex baseband model described in Section 2.3 on
p. 226 is an equivalent representation of such an analog channel, under
certain conditions. For the equivalence to hold, the transmitter needs
to generate the correct modulated passband signal from the complex
baseband samples, the receiver needs to demodulate and sample the
received signal correctly, and the transmitter and receiver need to be
synchronized in time and frequency. None of these conditions are fully
satisfied in practice, because the closer to ideal a hardware component
is, the more challenging it is to implement—it becomes bulkier, more
expensive, and consumes more power. In other words, there is a cost-
quality tradeoff in practical systems. As already shown in Section 5, this
tradeoff is particularly important when implementing Massive MIMO
systems because if BS j is equipped with Mj antennas it needs Mj

copies of many components; for example, PAs, ADCs, filters, I/Q mixers,
and DACs. The cost of such an implementation will be, roughly, Mj

times higher than the cost of a single-antenna transceiver, unless we
can compensate by reducing the quality of the individual components.

To investigate how the quality of the hardware components affects
the communication performance, we need a model of how the hardware
affects the transmitted and received signals and particularly the SE.
Different from the linear channel filter, many hardware components
act as non-linear filters. For example, the PA in the transmitter does
generally not have a linear amplification, but provides less amplification
gain to stronger input signals; in other words, the output power saturates.
The finite-resolution quantization in the receiver is another non-linear
operation, which additionally is destructive and cannot be undone. These
non-idealities are referred to as hardware impairments in this monograph.
There is plenty of literature on the modeling of different types of
hardware impairments, including PA non-linearities, amplitude/phase
imbalance in I/Q mixers, phase noise in LOs, sampling jitter, and
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(a) Ideal transceiver hardware without hardware impairments.
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(b) Transceiver hardware with impairments that act as non-linear filters.

Figure 6.1: A communication system is modeled differently depending on whether
the impact of the transceiver hardware can be neglected or not. All filters in this
figure are assumed to be memoryless.

finite-resolution quantization in ADCs. These models are typically
used to devise analog or digital compensation algorithms that mitigate
the impairments, which can substantially reduce their impact on the
communication. Residual impairments will still exist due to modeling
inaccuracies and the destructive nature of some impairments. We will not
cover the detailed modeling and compensation of hardware impairments
here, but we refer to [147, 290, 322, 344] and references therein. Instead,
we will focus on the impact that (residual) hardware impairments
have on the SE, by modeling the non-ideal hardware as non-linear
memoryless filters at the transmitter and the receiver [42]. This setup
is illustrated in Figure 6.1b. Note that additive noise exists in many
components of the receiver and is being filtered and amplified, similarly
to the desired signals. Thermal noise is a main cause of additive noise in
communications, but we refer to it as receiver noise since it accounts also
for the noise amplification due to hardware impairments. For simplicity,
we represent all the noise created in the receiver by a single equivalent
receiver noise term that is added to the output of the receiver hardware.

6.1.1 Basic Modeling of Residual Hardware Impairments

To understand the basic impact of hardware impairments, we consider an
information signal x ∼ NC(0, p) that is fed into a non-linear memoryless
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function g(·). This function produces the output y = g(x) that is also
a random variable, but its distribution is generally non-Gaussian. The
output y is correlated with the input x [69]. In particular, we can express
the output signal as

y = E{yx?}
p

x+ η (6.1)

where we have defined the distortion term

η = y − E{yx?}
p

x (6.2)

and utilized the assumption E{|x|2} = p. Note that the expression in
(6.1) does not account for the receiver noise, which can later be added
to the output. The expectation E{yx?} = E{g(x)x?} can be computed
for any given g(·), either analytically or numerically. The distortion
term η is uncorrelated with x, since

E{ηx?} = E{yx?} − E{yx?}
p

E{|x|2}︸ ︷︷ ︸
=p

= 0. (6.3)

However, the input and the distortion term are generally not inde-
pendent. For example, suppose g(x) = a|x|2x + bx for some scalars
a, b 6= 0. Then, from the definition of the distortion term, we have that
η = a|x|2x− 2apx, which is clearly dependent on x.

We can exploit the fact that the distortion term is uncorrelated
with the input to bound the capacity C of the non-linear memoryless
channel between x and y [377]. In particular, we can utilize the lower
bound in Corollary 1.3 on p. 171 for deterministic channels by setting
h = E{yx?}/p, pυ = E{|η|2} = E{|y|2}−|E{yx?}|2/p, and σ2 = 0. This
results in

C ≥ log2

(
1 + p|h|2

pυ

)
= log2

(
1 + |E{yx?}|2/p

E{|y|2} − |E{yx?}|2/p

)
. (6.4)

This lower bound on the capacity is an achievable SE and reveals that
from the total power E{|y|2} of the output, the part that is correlated
with the input (which has power |E{yx?}|2/p) is always useful for
communication. The distortion term η can also carry useful information,
but in the worst case it is an independent complex Gaussian variable
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with zero mean and power E{|y|2} − |E{yx?}|2/p. This is the worst-
case condition under which the lower bound in (6.4) is attained. We
stress that the SE in (6.4) is generally finite, although there is no noise
included in the non-linear channel relation between x and y.

In what follows, we will utilize the observations above to define
an analytically tractable model of the impact of (residual) hardware
impairments on the communication. As noted above, the key modeling
characteristics are that the desired signal is scaled by a deterministic
factor and that an uncorrelated memoryless distortion term is added,
which is Gaussian distributed in the worst case. Assume that the com-
pensation algorithms that are used to mitigate hardware impairments
are calibrated to make the average power of the input and output equal:
E{|y|2} = E{|x|2} = p. If we define the parameter

κ = |E{yx
?}|2

E{|x|2} = |E{yx
?}|2

p
(6.5)

then the output of the non-linear hardware is modeled as

y =
√
κx+ η (6.6)

where x ∼ NC(0, p) is the input and the distortion term η is worst-case
modeled as η ∼ NC(0, (1− κ)p) and independent of x. The distortion
power is therefore proportional to the input power p, with the pro-
portionality constant (1− κ). This makes the additive distortion term
different from conventional receiver noise, which is independent of the
input power. When operating at high SNR, where the noise is negligible,
the distortion becomes a main limiting factor for the SE [56]. We refer
to κ ∈ (0, 1] as the hardware quality factor, where κ = 1 represents
ideal hardware with y = x. In contrast, κ = 0 is the pathological case
where the output signal is uncorrelated with the input. Note that, by
definition, E{|y|2} = κp+ (1− κ)p = p for any κ.

The input-output model in (6.6) is by no means a full characteriza-
tion of the transceiver hardware characteristics, but it captures the essen-
tial detrimental impact that hardware impairments have on the SE. For
example, the capacity lower bound in (6.4) becomes log2(1 + κ/(1− κ))
when using the notation defined in (6.5). This expression is character-
ized only by κ and is an increasing function for κ ∈ (0, 1]. The true
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capacity is possibly higher, but the lower bound represents what can be
achieved without any complicated hardware-adapted signal processing
that attempts to extract information from η.

6.1.2 A Practical Measure of Hardware Quality

The error vector magnitude (EVM) is a common metric for measuring
the distortion level in practical transceiver hardware. It is defined as
the ratio between the average distortion magnitude and the signal mag-
nitude, after basic equalization. For the model in (6.6), the input signal
is x, the output signal is y, and the equalized output that minimizes1
the MSE is y

√
κ. The EVM definition then gives

EVM =
√

E{|y√κ− x|2}
E{|x|2} =

√
(1− κ)p

p
=
√

1− κ. (6.7)

The EVM is one of the key metrics that are specified on the data sheets
of RF transceivers. The LTE standard requires EVM ≤ 0.08 in the
transmitter hardware if 64-QAM should be supported [144, Sec. 14.3.4].
This corresponds to κ = 1− EVM2 ≥ 0.994. If the transmitter should
only support 4-PSK, then LTE only requires EVM ≤ 0.175 and this
corresponds to κ ≥ 0.97. While practical LTE transceivers typically
support 64-QAM, larger EVMs than 0.08 are of interest in Massive
MIMO to relax the hardware design constraints. The analysis in this
section applies to any κ between zero and one.

6.1.3 Extending the Canonical Massive MIMO Model

We will now incorporate hardware impairments into the Massive MIMO
system model with ideal hardware that was used for analysis in the
previous sections. We consider impairments in both the transmitter and
the receiver hardware, as illustrated in Figure 6.1b. These impairments
affect the analog signals that are transmitted over the channel, but we
model the impairments on the complex-baseband representation. The
impairment model from Section 6.1.1 will be applied to model both

1The MSE E{|ya − x|2} between the input x and the equalized output ya is
minimized by selecting a =

√
κ, which leads to the MSE value (1− κ)p.
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the transmitter distortion and the receiver distortion, in both UL and
DL. We assume that the distortion is independent between samples,
which is a worst-case assumption since a correlation could be utilized
for distortion mitigation. A consequence of this assumption is that the
coherence block dimensionality of the end-to-end channel, including
the hardware, is the same as for the propagation channel. The model
described below resembles the one in [42], but the notation is different.

Uplink Transmission

In the UL, the data signal of UE k in cell j is sjk ∼ NC(0, pjk), as
defined in Section 2.3.1 on p. 226. This complex Gaussian signal is
distorted by the transmitter hardware and we apply the model in (6.6)
to obtain that

√
κUE
t sjk + ηUE

jk is sent over the channel instead of sjk,
where ηUE

jk ∼ NC(0, (1− κUE
t )pjk) is the hardware distortion term. The

factor κUE
t ∈ (0, 1] determines the quality of the UE’s transmitter

hardware and is assumed to be the same for all UEs, for notational
convenience. Following (2.5), the signal y̆j ∈ CMj that reaches the Mj

receive antennas of BS j (before noise is added) is

y̆j =
L∑

l=1

Kl∑

i=1
hjli
(√

κUE
t sli + ηUE

li

)
. (6.8)

In a given coherence block with a set {hjli} of channel realizations, the
signal y̆j is conditionally complex Gaussian distributed with zero mean
and correlation matrix

E
{
y̆jy̆H

j

∣∣{hjli}
}

=
L∑

l=1

Kl∑

i=1
plihjli(h

j
li)

H (6.9)

since E{|
√
κUE
t sli + ηUE

li |2} = pli. Hence, we can apply (6.6) once more
to model the impairments in the receiver hardware. We assume that
the transceiver hardware attached to the different BS antennas are
decoupled so that their respective distortion terms are independent.2

2Even if the transceiver hardware is decoupled, the received signals are correlated
since the same transmitted signals are observed on all antennas. This fact can make
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The hardware distortion in the receiver replaces y̆j with
√
κBS
r y̆j +ηBS

j ,
where the distortion term ηBS

j ∈ CMj has the conditional distribution

ηBS
j ∼ NC

(
0Mj ,Dj,{h}

)
(6.10)

for the given set of channel realizations {hjli} and the conditional corre-
lation matrix Dj,{h} ∈ CMj×Mj is given by

Dj,{h} = (1− κBS
r )

L∑

l=1

Kl∑

i=1
plidiag

(∣∣[hjli]1
∣∣2, . . . ,

∣∣[hjli]Mj

∣∣2
)

(6.11)

where [hjli]m denotes the mth element of hjli. The factor κBS
r ∈ (0, 1]

determines the quality of the BS’s receiver hardware and is the same
for all BSs, for notational convenience. Note that the diagonal of Dj,{h}
is the same as that of the matrix in (6.9), except for the scaling factor
(1− κBS

r ), which means that the receiver distortion term at each receive
antenna is proportional to the power received at that antenna (which
is generally different between antennas). The off-diagonal elements in
Dj,{h} are zero due to the assumed independence of the distortion terms
over the array. The marginal (unconditional) distribution of the receiver
distortion can be expressed as

ηBS
j =

√
1− κBS

r

L∑

l=1

Kl∑

i=1

√
plihjli � η̄BS

jli (6.12)

where η̄BS
jli ∼ NC(0Mj , IMj ) is an independent random variable and

� denotes the Hadamard product. Note that the receiver distortion
term in (6.12) is the element-wise product of two independent complex
Gaussian vectors and is, thus, not Gaussian distributed.

In summary, by adding the receiver noise nj to
√
κBS
r y̆j + ηBS

j , the

the distortion terms correlated as well. Simply speaking, the hardware reacts similarly
to correlated input signals. The measurements reported in [223] confirm that such
correlation exists but also that it is rather small. Thus the correlation matrix of the
distortion has a different eigenstructure than the correlation matrix of the signal in
(6.9). This is the key property that we capture in our model, while the assumption of
independence between the distortion terms is only made for analytical tractability.



6.1. Transceiver Hardware Impairments 411

received UL signal yj ∈ CMj at BS j is modeled as

yj =
√
κBS
r

L∑

l=1

Kl∑

i=1
hjli
(√

κUE
t sli + ηUE

li

)
+ ηBS

j + nj (6.13)

and represents the signal that is available in the digital baseband, for
signal processing and data detection.

Downlink Transmission

In the DL, BS l is supposed to transmit the signal xl = ∑Kl
i=1 wliςli,

where ςli ∼ NC(0, ρli) is the data signal intended for UE i in cell l,
as defined in Section 2.3.2 on p. 227. The precoding vectors depend
on the current channel realizations (or rather on the estimates of the
channels). Hence, in a given coherence block with the set {hjlk} of
channel realizations, the precoding vectors are fixed. The signal xl is
then conditionally complex Gaussian distributed with zero mean and
correlation matrix

E
{
xlxH

l

∣∣{hjlk}
}

=
Kl∑

i=1
ρliwliwH

li. (6.14)

We can now apply the impairment model in (6.6) to describe the
impairments in the hardware attached to each transmit antenna of BS l.
We once again assume that the transceiver hardware of the different
BS antennas are decoupled so that the respective distortion terms
are independent. Hence, the signal x̆l =

√
κBS
t xl + µBS

l is transmitted
over the channel instead of xl, where the hardware distortion term
µBS
l ∈ CMl has the conditional distribution

µBS
l ∼ NC

(
0Ml

,Dl,{w}
)

(6.15)

for the given set {wli} of precoding vectors. The conditional correlation
matrix Dl,{w} ∈ CMl×Ml is given by

Dl,{w} = (1− κBS
t )

Kl∑

i=1
ρlidiag

(∣∣[wli]1
∣∣2, . . . ,

∣∣[wli]Ml

∣∣2
)

(6.16)
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where [wli]m denotes the mth element of wli. The factor κBS
t ∈ (0, 1]

determines the quality of the BS’s transmitter hardware and is the same
for all BSs, for notational convenience. The marginal distribution of the
transmitter distortion can then be expressed as

µBS
l =

√
1− κBS

t

Kl∑

i=1

√
ρliwli � µ̄BS

li (6.17)

where µ̄BS
li ∼ NC(0Ml

, IMl
) is an independent random variable. Note

that this transmitter distortion term is the element-wise product be-
tween independent complex Gaussian vectors, thus it is not Gaussian
distributed.

The signal that reaches UE k in cell j (before receiver noise is
added) is ∑L

l=1(hljk)Hx̆l and, in the given coherence block, it is complex
Gaussian distributed with zero mean and conditional variance

ζjk,{w} = E





∣∣∣∣∣
L∑

l=1
(hljk)Hx̆l

∣∣∣∣∣

2 ∣∣∣{hjlk}




=
L∑

l=1
(hljk)H



Kl∑

i=1
ρliκ

BS
t wliwH

li + Dl,{w}


hljk

=
L∑

l=1

Kl∑

i=1
ρli
(
κBS
t |(hljk)Hwli|2 + (1− κBS

t )‖wli � hljk‖2
)

(6.18)

where the second equality follows from (6.16). We can once again
apply (6.6) to model impairments in the receiver hardware of UE k in
cell j. This changes the received signal to

√
κUE
r

∑L
l=1(hljk)Hx̆l + µUE

jk ,
where µUE

jk is the hardware distortion term with conditional distribution
µUE
jk ∼ NC(0, (1− κUE

r )ζjk,{w}). The marginal distribution is

µUE
jk =

√
(1− κUE

r )ζjk,{w}µ̄UE
jk (6.19)

where µ̄UE
jk ∼ NC(0, 1) is an independent random variable. The factor

κUE
r ∈ (0, 1] determines the quality of the UE’s receiver hardware

and is the same for all UEs, for notational convenience. Finally, the
independent receiver noise njk ∼ NC(0, σ2

DL) is added to the signal.
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In summary, by taking transceiver hardware impairments into ac-
count, the received DL sample yjk ∈ C at UE k in cell j is modeled as

yjk =
√
κUE
r

L∑

l=1
(hljk)H



√
κBS
t

Kl∑

i=1
wliςli + µBS

l


+ µUE

jk + njk (6.20)

and represents the signal that is available in the digital baseband, for
signal processing and data detection.

6.2 Channel Estimation with Hardware Impairments

The UL channel estimation is carried out as described in Section 3.1 on
p. 244, with the only difference that the received signal Yp

j ∈ CMj×τp

at BS j now contains distortion from hardware impairments. Recall
that φli ∈ Cτp is the pilot sequence used by UE i in cell l. When it is
transmitted over τp instances of the UL model in (6.13), we have3

Yp
j =

√
κBS
r

L∑

l=1

Kl∑

i=1
hjli
(√

pliκ
UE
t φT

li +
(
ηUE
li

)T
)

+GBS
j + Np

j (6.21)

where Np
j ∈ CMj×τp is receiver noise whose elements are i.i.d. as

NC(0, σ2
UL). The transmitter distortion ηUE

li ∈ Cτp contains τp indepen-
dent realizations of ηUE

li in (6.13), thus ηUE
li ∼ NC(0τp , (1− κUE

t )pliIτp).
Each column of the receiver distortion matrix GBS

j ∈ CMj×τp has the
same distribution as ηBS

j in (6.13). More precisely, for a given set of
channel realizations {h}, the columns are independently distributed as
NC(0Mj ,Dj,{h}).

When BS j estimates the channel hjli from UE i in cell l, it first
correlates Yp

j with the pilot sequence φli used by this UE, which results

3The system model in (6.13) assumes that the transmitted signals are Gaussian
distributed, while we use it here for transmission of deterministic pilot sequences. This
issue can be resolved by rotating the pilot book by a Haar distributed matrix, which
turns each pilot sequence into a scaled i.i.d. Gaussian vector. Since the estimation
performance, in that case, is the same as with the simplified model considered in
this section, we have for simplicity omitted the rotation matrices.
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in ypjli = Yp
jφ

?
li. For example, for the kth UE in cell j we get

ypjjk = Yp
jφ

?
jk =

√
pjkκ

UE
t κBS

r τphjjk
︸ ︷︷ ︸

Desired pilot

+
∑

(l,i)∈Pjk\(j,k)

√
pliκ

UE
t κBS

r τphjli
︸ ︷︷ ︸

Interfering pilots

+
L∑

l=1

Kl∑

i=1

√
κBS
r hjli

(
ηUE
li

)T
φ?jk

︸ ︷︷ ︸
Transmitter distortion

+ GBS
j φ

?
jk

︸ ︷︷ ︸
Receiver distortion

+ Np
jφ

?
jk

︸ ︷︷ ︸
Noise

.

(6.22)

Since the pilot sequences are deterministic and ‖φjk‖2 = τp, we have
(ηUE

li )Tφ?jk ∼ NC(0, τp(1− κUE
t )pli), Np

jφ
?
jk ∼ NC(0Mj , σ

2
ULτpIMj ), and

the conditional distribution GBS
j φ

?
jk ∼ NC(0Mj , τpDj,{h}) given {h}.

The processed signal ypjjk in (6.22) will be used to estimate hjjk. As
expected, ypjjk depends on the channel from UE i in cell l to BS j, for all
(l, i) ∈ Pjk, which are the UEs that use the same pilot. In fact, ypjli = ypjjk
for (l, i) ∈ Pjk, thus the same processed signal can be used for estimating
hjli. In addition, ypjjk is affected by the transmitter distortion from all
UEs in the entire network, since the random distortion terms are (almost
surely) non-orthogonal to the pilot sequences. The receiver distortion
also depends on the transmissions from all UEs. This implies that, with
hardware impairments, there is pilot contamination between every UE.

Channel estimation is theoretically more challenging with hardware
impairments because it is not only the desired pilot term in (6.22) that
depends on the channel realization but also the distortion terms. In
particular, the received signal ypjli is not Gaussian distributed, since some
of the terms are formed as products between two Gaussian variables.
Hence, the standard MMSE estimation results for Gaussian distributed
channels that are observed in independent Gaussian noise cannot be
applied here. In principle, we could compute another MMSE estimation
expression for the scenario at hand, but since we observed in Section 4.2.3
on p. 313 and Section 4.3.5 on p. 332 that suboptimal estimators can be
used with little performance loss, we take the more practical approach
of computing the LMMSE estimator. The linear estimator ĥjli that
minimizes the MSE E{‖hjli − ĥjli‖2} takes the following form.
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Theorem 6.1. With hardware impairments, the LMMSE estimate of
hjli, based on ypjli = Yp

jφ
?
li, is

ĥjli =
√
pliκ

UE
t κBS

r Rj
liΨ

j
liy

p
jli

(6.23)

where

Ψj
li =

( ∑

(l′,i′)∈Pli
pl′i′κ

UE
t κBS

r τpRj
l′i′ + σ2

ULIMj

+
L∑

l′=1

Kl′∑

i′=1
pl′i′(1− κUE

t )κBS
r Rj

l′i′ +
L∑

l′=1

Kl′∑

i′=1
pl′i′(1− κBS

r )DRj

l′i′

)−1

(6.24)

and
DRj

l′i′
= diag

(
[Rj

l′i′ ]11, . . . [Rj
l′i′ ]MjMj

)
(6.25)

is an Mj ×Mj diagonal matrix with the diagonal elements from Rj
l′i′ .

The estimation error h̃jli = hjli − ĥjli has the correlation matrix
Cj
li = E{h̃jli(h̃

j
li)H} given by

Cj
li = Rj

li − pliκUE
t κBS

r τpRj
liΨ

j
liR

j
li (6.26)

while the LMMSE estimate satisfies

E{ĥjli(ĥ
j
li)

H} = Rj
li −Cj

li = pliκ
UE
t κBS

r τpRj
liΨ

j
liR

j
li. (6.27)

Proof. The proof is available in Appendix C.5.1 on p. 612.

The LMMSE estimator with hardware impairment in (6.23) has a
structure similar to that of the MMSE estimator for ideal hardware in
Theorem 3.1 on p. 249. An important difference is that the transmit
power pli of the UE is reduced to pliκ

UE
t κBS

r , since only a fraction
κUE
t κBS

r ≤ 1 of the power is received without distortion. Moreover, the
matrix Ψj

li contains not only receiver noise and interference from UEs
that reuse the same pilot sequence, but also hardware distortion caused
by the signaling from all UEs in the entire network.

The LMMSE estimate ĥjli in (6.23) is computed by multiplying the
observation ypjli with the deterministic matrix

√
pliκ

UE
t κBS

r Rj
liΨ

j
li. Since
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ypjli is not Gaussian distributed, the estimate is not Gaussian either.
The estimate ĥjli and the estimation error h̃jli are uncorrelated by the
definition of LMMSE estimation, meaning that E{ĥjli(h̃

j
li)H} = 0Mj×Mj ,

but they are not independent. This is different from the MMSE estimator
computed with ideal hardware, which provides Gaussian distributed
estimates and then the fact that the estimate and the estimation error
are uncorrelated implies that they are also independent. The different
behavior with hardware impairments has no major practical implications,
but it is analytically important when we compute SEs in Section 6.3.

The special case of ideal hardware is represented by κUE
t = κBS

r = 1.
In this case, the LMMSE estimator in (6.23) coincides with the MMSE
estimator for ideal hardware in Theorem 3.1.

6.2.1 Impact of Hardware Impairments on Channel Estimation

We will now illustrate the basic impact that hardware impairments
have on the channel estimation by considering a single-cell single-UE
setup where the channel is denoted by h ∼ NC(0M ,R) and has the
correlation matrix R ∈ CM×M . The estimation error correlation matrix
in (6.26) then becomes

C = R − pκUE
t κBS

r τpRΨR (6.28)

where

Ψ =
(
p
(
1 + κUE

t (τp − 1)
)
κBS
r R + p(1− κBS

r )DR + σ2
ULIM

)−1
. (6.29)

The expression in (6.28) is different from R − R(R + σ2
UL
pτp

IM )−1R,
which is obtained with ideal hardware (i.e., κUE

t = κBS
r = 1). The

difference is particularly visible at high SNR, when p→∞, since the
error correlation matrix in (6.28) approaches

C = R −R
(

1 + κUE
t (τp − 1)
κUE
t τp

R + (1− κBS
r )

κUE
t κBS

r τp
DR

)−1

R (6.30)

which is equal to R − RR−1R = 0M×M for κUE
t = κBS

r = 1, but
otherwise is non-zero. In other words, asymptotically error-free channel
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Figure 6.2: NMSE of a spatially correlated channel with hardware impairments,
based on the local scattering model with Gaussian angular distribution and ASD
σϕ = 10◦. The result is averaged over different nominal angles.

estimates are achieved at high SNR with ideal hardware, while there is
a non-zero estimation error floor with hardware impairments.

If we further assume R = βIM , the error correlation matrix in (6.30)
simplifies to

C = βIM −
β2

1+κUE
t (τp−1)
κUE
t τp

β + (1−κBS
r )

κUE
t κBS

r τp
β

IM

= β(1− κUE
t κBS

r )
1 + κUE

t κBS
r (τp − 1)

IM . (6.31)

The expression in front of the identity matrix is the error floor and it is
determined by the hardware quality (κUE

t and κBS
r ), the length of the

pilot sequence τp, and the average channel gain β. One straightforward
way to lower the error floor is to increase τp. Note that the transmitter
and receiver distortion have an identical impact on C in this case. This
is not the case when there is spatial channel correlation.

The average NMSE, tr(C)/tr(R), is shown in Figure 6.2 for correla-
tion matrices generated by the local scattering model, defined in (2.23),
with Gaussian angular distribution, ASD σϕ = 10◦, and uniformly
distributed nominal angle. The figure shows the NMSE as a function
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of the effective SNR pτp/σ
2
UL for τp = 10 and with different hardware

qualities. The upper curves have κUE
t = κBS

r = 0.95, the middle curves
have κUE

t = κBS
r = 0.99, and the bottom curve has ideal hardware (i.e.,

κUE
t = κBS

r = 1). The NMSE is shown for the LMMSE estimator from
Theorem 6.1 and for a mismatched estimator that ignores the hardware
impairments (i.e., we use the estimator from Theorem 3.1, which is not
the MMSE estimator with hardware impairments).

Figure 6.2 confirms that there are error floors in the channel esti-
mation at high SNR and that the error floor increases as the hardware
quality decreases. The impact of hardware impairments is small at low
SNR, but substantial at high SNR. The NMSE with hardware impair-
ments is close to the error floor already at an effective SNR of 20 dB,
thus a further increase in SNR only brings minor improvements. An
effective SNR of 20–30 dB is sufficient to achieve nearly the maximal
estimation quality with hardware impairments. Another key observation
is that the mismatched estimator provides almost the same NMSE as
the LMMSE estimator. This indicates that although hardware impair-
ments greatly affect the estimation quality, the loss of using a simple
estimator that ignores the impairments is minor.

6.2.2 Estimation with Interference and Hardware Impairments

To showcase the joint impact of hardware distortion and inter-cell
interference, we continue the running example defined in Section 4.1.3
on p. 288 with M = 100, K = 10, and UL power 20 dBm per UE.
We consider the NMSE, tr(Cj

jk)/tr(Rj
jk), from an arbitrary BS j to an

arbitrary UE k in its cell. The results are presented as CDF curves, where
the randomness is the UE locations and shadow fading realizations. We
consider the Gaussian local scattering model with ASD σϕ = 10◦.

Figure 6.3 shows the CDFs with either ideal hardware or hardware
impairments with κUE

t = κBS
r = 0.95. In both cases, the NMSE reduces

substantially as the pilot reuse factors f is increased. This is natural since
the pilot processing gain τp is increased and the inter-cell interference
is reduced. The distortion from hardware impairments has the opposite
effect of increasing the NMSE, since the transmitter distortions break
the orthogonality of the pilot sequences, leading to interference from all
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Figure 6.3: CDF of the NMSE in the channel estimation for an arbitrary UE in
the running example. The results are shown for different UL hardware qualities
(κUE
t , κBS

r ) and pilot reuse factors f .

UEs, including itself. The conclusion is that hardware impairments can
greatly degrade the channel estimation in cellular networks and might
be a more critical performance-reducing factor than conventional pilot
contamination.

6.3 Spectral Efficiency with Hardware Impairments

The achievable SEs in systems with hardware impairments will now
be analyzed. SE expressions and numerical results will be provided to
show how hardware distortion affects the performance. This will reveal
that the quality of the UE and the BS hardware have a very different
impact on the SE.

6.3.1 Uplink SE Expressions

In the UL, BS j selects a receive combining vector vjk ∈ CMj for its
kth UE, similar to Section 4.1 on p. 275. By applying this vector to the
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received signal yj ∈ CMj in (6.13), the BS obtains

vH
jkyj =

√
κBS
r

L∑

l=1

Kl∑

i=1
vH
jkh

j
li(
√
κUE
t sli + ηUE

li ) + vH
jkη

BS
j + vH

jknj

=
√
κUE
t κBS

r E{vH
jkh

j
jk}sjk︸ ︷︷ ︸

Desired signal over average channel

+
√
κUE
t κBS

r (vH
jkh

j
jk − E{vH

jkh
j
jk})sjk︸ ︷︷ ︸

Self-interference

+
√
κBS
r vH

jkh
j
jkη

UE
jk︸ ︷︷ ︸

Self-distortion

+
√
κBS
r

L∑

l=1

Kl∑

i=1
(l,i)6=(j,k)

vH
jkh

j
li

(√
κUE
t sli + ηUE

li

)

︸ ︷︷ ︸
Inter-user interference and transmitter distortion

+ vH
jkη

BS
j

︸ ︷︷ ︸
Receiver distortion

+ vH
jknj

︸ ︷︷ ︸
Noise

.

(6.32)

The signal consists of the desired signal, self-interference, self-distortion,
interference, transmitter/receiver distortion, and noise, as indicated in
(6.32). The second equality follows from adding and then subtracting
the desired signal that is received over the average effective channel√
κUE
t κBS

r E{vH
jkh

j
jk}. With this formulation, we can compute a UatF

bound on the channel capacity of the UE, as on p. 302, by treating
everything that is not received over the average effective channel as
worst-case noise. The UatF bound is considered since there is no simple
counterpart to the tighter UL bound in Theorem 4.1 on p. 276. That
bound requires the estimation error to have zero conditional mean, for
every given channel realization, which might not be the case when the
estimate and estimation error are statistically dependent.

Theorem 6.2. With hardware impairments, the UL ergodic channel
capacity of UE k in cell j is lower bounded by

SEUL−imp
jk = τu

τc
log2

(
1 + SINRUL−imp

jk

)
(6.33)
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with

SINRUL−imp
jk =

pjk
|E{vH

jkh
j
jk
}|2

E{‖vjk‖2}
∑
l,i
pli

(
κBS
r E{|vH

jk
hj
li
|2}+(1−κBS

r )E{‖vjk�hj
li
‖2}

κUE
t κBS

r E{‖vjk‖2}

)
−pjk

|E{vH
jk

hj
jk
}|2

E{‖vjk‖2} + σ2
UL

κUE
t κBS

r

(6.34)
where the expectations are with respect to the channel realizations.

Proof. The proof is available in Appendix C.5.2 on p. 614.

This theorem provides an achievable UL SE for systems with hard-
ware impairments. The SE is measured in bit/s/Hz, as in previous
sections, and this implicitly assumes that the signal’s bandwidth is kept
constant under the presence of hardware impairments. Since hardware
impairments generally lead to spectral regrowth, in practice, one might
need to reduce the bandwidth to comply with out-of-band radiation
regulations, depending on how these are defined; see Section 6.4.3 for
a further discussion. The expression can be computed numerically for
any receive combining scheme and any spatial correlation matrices.
The same schemes as presented for ideal hardware impairments in Sec-
tion 4.1.1 on p. 281 (e.g., M-MMSE, RZF, and MR) can be applied also
with hardware impairments, as will be demonstrated later.

There are many similarities between (6.34) and the corresponding
effective SINR expression with ideal hardware in (4.14). The numer-
ator contains the signal power that is useful for detection, while the
denominator contains the total received power minus the expression
from the numerator. One key difference is that the desired signal power
is reduced by a factor κUE

t κBS
r ∈ (0, 1], which in (6.34) is represented by

multiplying the interference and noise terms by 1/(κUE
t κBS

r ) ≥ 1. This
factor describes the SNR loss caused by desired signals being turned
into distortion. Another key difference is that a fraction (1− κBS

r ) of
the conventional interference term E{|vH

jkh
j
li|2} is replaced by the al-

ternative term E{‖vjk � hjli‖2}, where the inner product is changed to
an element-wise multiplication. The latter term can be substantially
smaller than the former; for example, suppose vjk = hjli = 1Mj , then
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|vH
jkh

j
li|2 = |Mj |2 = M2

j while ‖vjk � hjli‖2 = ‖1Mj‖2 = Mj . The intu-
ition is that the former term adds the signals coherently in the amplitude
domain, while the latter only sums up the average power per antenna.
This indicates that having hardware impairments in the receiving BS
can also reduce the interference level.

In addition to changing the structure of the SINR, the combining
vectors are also affected since they typically depend on channel estimates
that are already degraded by hardware distortion. The expectations in
(6.34) can sometimes be computed in closed form with MR combining;
the case with diagonal spatial correlation matrices was considered in
[53, 376], while arbitrary correlation matrices were treated in [42]. The
general impact of spatial channel correlation was analyzed in Section 4.
For this reason, we focus on spatially uncorrelated channels in this
section to show concisely how hardware impairments affect the SE.

Corollary 6.3. If MR combining with vjk = ĥjjk is used, based on
the LMMSE estimator in Theorem 6.1, and the channels are spatially
uncorrelated (i.e., Rj

li = βjliIMj for l = 1, . . . , L and i = 1, . . . ,Kl), then

|E{vH
jkh

j
jk}|2

E{‖vjk‖2}
= pjkκ

UE
t κBS

r (βjjk)
2τpψjkMj (6.35)

E{|vH
jkh

j
li|2}

E{‖vjk‖2}
= βjli + pli(βjli)

2ψjk
(
1− κBS

r + (1− κUE
t )κBS

r Mj

)

+




pliκ

UE
t κBS

r (βjli)2τpψjkMj (l, i) ∈ Pjk
0 (l, i) 6∈ Pjk

(6.36)

E{‖vjk � hjli‖2}
E{‖vjk‖2}

= βjli + pli(βjli)
2ψjk

(
1− κUE

t κBS
r

)

+




pliκ

UE
t κBS

r (βjli)2τpψjk (l, i) ∈ Pjk
0 (l, i) 6∈ Pjk

(6.37)

where

ψjk = 1
∑

(l′,i′)∈Pjk
pl′i′κ

UE
t κBS

r τpβ
j
l′i′ +

∑
l′,i′

pl′i′(1− κUE
t κBS

r )βjl′i′ + σ2
UL
.

(6.38)



6.3. Spectral Efficiency with Hardware Impairments 423

The SE in Theorem 6.2 becomes SEUL−imp
jk = τu

τc
log2(1 + SINRUL−imp

jk )
with

SINRUL−imp
jk =

(pjkβjjk)2τpψjkMj

∑
l,i
pliβ

j
liF

jk
li + ∑

(l,i)∈Pjk
(pliβjli)2τpψjkMjGj−(pjkβjjk)2τpψjkMj+

σ2
UL

(κUE
t κBS

r )2

(6.39)

where

F
jk
li =

1 + pliβ
j
liψjk

(
1− κUE

t κBS
r + (1−κUE

t )(κBS
r )2(Mj−1)

)

(κUE
t κBS

r )2 (6.40)

Gj = 1 + κBS
r (Mj − 1)

MjκUE
t κBS

r

. (6.41)

Proof. The proof is available in Appendix C.5.3 on p. 615.

The SE expression in Corollary 6.3 generalizes the previous expres-
sion in Corollary 4.5 on p. 303 to include hardware impairments. The
general structure is otherwise the same; the signal term in the numera-
tor of the SINR is identical, while the denominator contains noise as
well as non-coherent and coherent interference terms, where the latter
refers to the terms that grow with Mj . The noise term has effectively
increased by a factor 1/(κUE

t κBS
r )2 ≥ 1, which does not mean that the

noise itself has grown, but that the signal power has been reduced by
(κUE
t κBS

r )2. This type of “squaring effect” also appeared in the transmit
power-scaling law in Section 5.2.1 on p. 359. In this section, it is the
combined effect of losing a factor 1−κUE

t κBS
r of the signal power during

both channel estimation and data transmission.
The conventional non-coherent interference term ∑

l,i pliβ
j
li is re-

placed by ∑l,i pliβ
j
liF

jk
li , where the factor F jkli is an affine increasing

function of Mj . This implies that all UEs, irrespective of their pilot
sequences, cause some coherent interference to each other. The rea-
son is that the distortion breaks the orthogonality between the pilot
sequences. The term ∑

(l,i)∈Pjk(pliβjli)2τpψjkMjGj represents the addi-
tional interference from UEs that use the same pilot as UE k in cell j.
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This term contains coherent interference caused by conventional pilot
contamination, but it also contains a small portion of non-coherent
interference (the first term in Gj does not grow with Mj) since the
pilot contamination reduces when a distorted version of the pilot is
transmitted.

The desired UE causes coherent interference to itself when there is
hardware impairments, which we refer to as self-distortion. For example,
there are two terms in the denominator of (6.39) that grow with Mj

and originate from the UE itself: (pliβjjk)2τpψjkMjGj in the second sum
and −(pjkβjjk)2τpψjkMj . These terms cancel out for Gj = 1, but with
hardware impairments we have Gj > 1. The coherent self-distortion
originates from the fact that the BS coherently combines both the
desired signal and the transmitter distortion that the UE caused during
data transmission.

In summary, hardware impairments reduce the effective signal power,
reduce the coherent interference from UEs having the same pilot, and
add coherent interference from all other UEs. To further study the
coherent interference characteristics, we consider the asymptotic regime
with a very large number of BS antennas.

Corollary 6.4. Under the same conditions as in Corollary 6.3, SINRUL−imp
jk

with MR combining has the asymptotic limit

(pjkβjjk)2

∑
l,i

(pliβjli)2 1−κUE
t

(κUE
t )2τp

+ ∑
(l,i)∈Pjk\(j,k)

(pliβjli)2 1
κUE
t

+ (pjkβjjk)2 1−κUE
t

κUE
t

(6.42)

as Mj →∞.

Proof. This result follows from taking the limit in (6.39) and noting
that F jli/Mj → pliβ

j
liψjk

1−κUE
t

(κUE
t )2 and Gj → 1/κUE

t .

This corollary shows that the noise and non-coherent interference
vanish asymptotically when the BS has many antennas, just as with
ideal hardware. Interestingly, also the impact of hardware impairments
at the receiving BS vanishes, as seen from the fact that the limit in
(6.42) is independent of κBS

r . The reason that the receiver distortion is
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combined non-coherently by MR is that the distortion vector points
in a direction that is asymptotically orthogonal to the channel, which
is similar to the concept of asymptotically favorable propagation (see
Section 2.5.2 on p. 233). The first interference term in the denominator
of (6.42) is caused by the imperfect pilot orthogonality due to distortion.
This term is proportional to 1/τp, which indicates that systems with
long pilot sequences are less affected by such hardware distortion.

The second term in the denominator is the coherent interference due
to reuse of pilots and it is a factor 1/κUE

t larger than when having ideal
hardware. It is actually not the interference that has increased but the
desired signal that has decreased. Note that the transmitter distortion
does not change the interference power during data transmission, but
only the content of the interfering signals, which is not important for a
receiver that treats interference as noise. The last term is the coherent
self-distortion. This term remains even if all other UEs are silent, thus
the asymptotic limit in (6.42) can be upper bounded as

SINRUL−imp
jk ≤

(pjkβjjk)2

(pjkβjjk)2 1−κUE
t

κUE
t

= κUE
t

1− κUE
t

. (6.43)

Larger effective SINRs than this cannot be achieved with hardware
impairments, with the model and MR scheme considered in this section.
The SINR limit is 166 for a high-quality transceiver with κUE

t = 0.99,
which corresponds to 7.4 bit/s/Hz and can be achieved in practice using
256-QAM signaling with a high coding rate. For a very low-quality
transceiver with κUE

t = 0.9, the SINR limit is 9 and the corresponding
SE is 3.3 bit/s/Hz, which is achievable by 16-QAM and a high coding
rate. These numbers give an indication of the maximum modulation
sizes that are useful in practice.

6.3.2 Impact of Hardware Impairment on UL SE

To quantify the impact that hardware distortions have on the SE in
systems with a practical number of antennas, we continue the running
example that was defined in Section 4.1.3 on p. 288. We consider
M = 100 and the Gaussian local scattering model with ASD σϕ = 10◦.
We use Theorem 6.2 to compute the SE with M-MMSE, RZF, and MR.
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The MR scheme is normalized as vjk = ĥjjk/‖ĥ
j
jk‖2, which was shown

in Section 4.2.1 on p. 306 to provide the tightest UatF bound. Except
for pilots, all samples in every coherence block are used for UL data.
The pilot reuse factor that maximizes the SE is considered.

Figure 6.4 shows the average sum SE as a function of the hardware
quality factors κUE

t = κBS
r ∈ [0.9, 1], which are assumed to be equal

for simplicity. We consider K = 10 and K = 20 UEs. Recall from
Section 6.1.2 that hardware qualities in the range from 0.97 to 1 are
typical with today’s hardware. A substantial loss in SE is observed
in this interval, where the steepest loss is from 1 to 0.99. M-MMSE
and RZF are particularly sensitive to the distortion that is added
when the hardware quality reduces, while MR is less affected. The
explanation is that M-MMSE and RZF suppress interference, which
makes the unsuppressed distortion stronger relative to the interference.
In contrast, MR is already limited by high levels of interference. The
fact that systems that achieve higher SEs require better hardware is
fully in line with the LTE requirements (see Section 6.1.2). The relative
loss in SE is higher with K = 10 than with K = 20, because in the
latter case there is more interference. In other words, a system that
provides low SE to many UEs is less affected by hardware impairments
than a system that provides high SE to fewer UEs. Note that M-MMSE
and RZF continue to provide substantial gains in SE over MR over the
entire range of hardware qualities.

6.3.3 Comparison of Interference and Distortion Sources

The terms in the UL effective SINR expression in (6.34) can be decom-
posed into the six components:

1. Desired signal: pjkκ
UE
t κBS

r

σ2
UL

|E{vH
jkh

j
jk
}|2

E{‖vjk‖2} ;

2. Interference from UEs having the same pilot:
∑

(l,i)∈Pjk\(j,k)
pliκ

UE
t κBS

r

σ2
UL

E{|vH
jkh

j
li
|2}

E{‖vjk‖2} ;

3. Interference from UEs having different pilots:
∑

(l,i)6∈Pjk
pliκ

UE
t κBS

r

σ2
UL

E{|vH
jkh

j
li
|2}

E{‖vjk‖2} ;
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(a) K = 10 UEs.
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(b) K = 20 UEs.

Figure 6.4: Average UL sum SE as a function of the hardware quality κUE
t = κBS

r ,
using the local scattering model with Gaussian angular distribution. We consider
M = 100 and K ∈ {10, 20}, and for each point on the curves we use the pilot reuse
factor that maximizes the SE.



428 Hardware Efficiency

4. Transmitter distortion: ∑(l,i)6=(j,k)
pli(1−κUE

t )κBS
r

σ2
UL

E{|vH
jkh

j
li
|2}

E{‖vjk‖2} ;

5. Receiver distortion: ∑l,i
pli(1−κBS

r )
σ2

UL

E{‖vjk�hj
li
‖2}

E{‖vjk‖2} ;

6. Self-distortion/interference: pjkκ
BS
r

σ2
UL

(E{|vH
jkh

j
jk
|2}−κUE

t |E{vH
jkh

j
jk
}|2)

E{‖vjk‖2} .

Note that these power terms have been normalized with respect to
the noise power and will be measured in dB. The term called self-
distortion/interference contains both the transmitter distortion that the
UE causes to itself and the interference that originates from the fact
that the BS has imperfect CSI, thus this term will be non-zero even with
ideal hardware. We continue the previous example with M = 100 and
K = 10 by analyzing the average power of each of these components.

The average powers (over different UE locations and channel realiza-
tions) of the six components are presented in Figure 6.5 for MR, RZF,
and M-MMSE combining. For each scheme, we consider three different
hardware qualities: κUE

t = κBS
r ∈ {0.95, 0.99, 1}. The pilot reuse factor

is f = 2, which means that each UE is affected by interference from
7 UEs that use the same pilot and 152 UEs that use different pilots.
Since there are many more UEs in the second category, if the average
interference caused per UE is the same in both categories, the latter
category would cause 10 log10(152/7) ≈ 13.4 dB more interference.

All three combining schemes provide average signal power levels
of around 40 dB, with the highest value for MR and the lowest value
for M-MMSE, since the latter sacrifices some array gain to suppress
interference. With ideal hardware, the (non-coherent) interference from
UEs with different pilots dominates the (partially coherent) interference
from UEs that reuse the same pilot. The power difference is as much as
24–27 dB for MR, which means that UEs in the own and neighboring
cells cause much more interference (on average) than the UEs in more
distant cells that reuse the same pilot. With RZF and M-MMSE, the
UEs that reuse the pilot actually cause slightly more interference per UE,
but since there are much fewer such UEs, their total interference power
is still negligible. Quantitively speaking, the total interference power is
34–36 dB with MR, 18–19 dB with RZF, and 11–16 dB with M-MMSE.
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Figure 6.5: Average UL power of desired signal, interference from UEs with same or
different pilots, transmitter and receiver distortion, and self-distortion/interference.
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The conventional interference terms are little affected by the inclu-
sion of hardware impairments, but three new interference components
are added: transmitter distortion, receiver distortion, and self-distortion,
where the latter refers to the transmitter distortion that the UE causes
to itself and it is lumped together with the conventional self-interference
caused by having imperfect CSI. Figure 6.5 shows that the transmitter
distortion power is potentially very different between the combining
schemes. The transmitter distortion has the same spatial directivity as
the conventional interference, but it is κUE

t /(1 − κUE
t ) times smaller.

Hence, M-MMSE and RZF suppress the transmitter distortion from
other UEs in the receive combining, while MR does not. Nonetheless,
the conventional interference is κUE

t /(1−κUE
t ) = 19 times stronger than

the transmitter distortion for κUE
t = 0.95, thus showing that one can

basically neglect its impact on the SE.
The receiver distortion depends on the total received power, which is

dominated by the desired signal power. The self-distortion/interference
is also roughly proportional to the signal power. Hence, these terms are
almost the same for all schemes, but varies with the hardware quality.
In the case of κUE

t = κBS
r = 0.95, the self-distortion/interference is

26–27 dB and the receiver distortion is around 19 dB. Although these
numbers are nearly the same for all schemes, the impact they have on
the SE is very different. The conventional interference power with MR
is twice as strong as the total distortion and self-distortion/interference
(with κUE

t = κBS
r = 0.95), while with M-MMSE the total distortion and

self-distortion/interference power is much stronger (11 times) than the
interference. The latter explains the substantial reduction in SE due to
hardware impairments that was observed for M-MMSE in Figure 6.4.

In summary, the self-distortion/interference is typically stronger
than both the transmitter distortion from other UEs and the receiver
distortion when having hardware impairments. The total power of trans-
mitter/receiver distortion and self-distortion/interference is roughly the
same for all combining schemes, but M-MMSE and RZF are more sus-
ceptible to it since these schemes can greatly suppress the conventional
types of interference, but not the self-distortion or receiver distortion.
Moreover, we know from the asymptotic analysis that the non-coherent
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interference and receiver distortion vanish asymptotically, thus leaving
the self-distortion as the main limiting factor.

6.3.4 Interference Visibility Range

As illustrated in Figure 6.5, the self-distortion can be an important
performance limiting factor in practice, since it has the same spatial
characteristics as the desired signal and thus cannot be rejected by
receive combining. Recall that the self-distortion creates the upper
bound in (6.43) on the SINR, even in a single-UE system, because
the self-distortion is consistently (1− κUE

t )/κUE
t times weaker than the

desired signal. Any source of interference or distortion that is substan-
tially weaker than the self-distortion is basically negligible. Qualitatively
speaking, for BS j, any interfering UE with a channel gain to BS j that
is much more than 10 log10((1−κUE

t )/κUE
t ) dB weaker than the channel

gain for a cell-edge UEs in cell j has no practical impact on the UL in
cell j. For example, with κUE

t = 0.97 we get (1− κUE
t )/κUE

t ≈ −15dB.
Let β̄jj denote the average channel gain for a UE at the edge of cell j
and let β̄jl be the average channel gain to BS j from an arbitrary UE
in cell l 6= j. If β̄jl /β̄

j
j � −15dB, then any interference (coherent or

non-coherent) from this UE to cell j can be neglected. This can be
visualized as an interference visibility range; see Figure 6.6. Only the
UEs within this range impact the SEs in the center cell, which is an
insight to take into account in the resource allocation (e.g., the center
cell’s pilots can be reused freely outside the interference visibility range).
The visibility range shrinks as the UE hardware quality reduces, which
thus reduces the need for interference management across cells. If we
instead improve the hardware quality of the UEs, motivated by the
fact that the SE is limited by it, then the interference visibility range
increases and each BS should coordinate its resource allocation with a
larger number of adjacent cells.

6.3.5 Downlink SE Expressions

In the DL, we consider the hardening bounding technique, which will
provide the baseline performance with hardware impairments. Similar
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Visibility range
(a) Interference visibility range with a small κUE

t .

Visibility range

(b) Interference visibility range with a large κUE
t .

Figure 6.6: Illustration of the limited interference visibility range that is created by
self-distortion. Only UL interference from UEs within this range has an impact on the
center cell, while the more distant UEs can be neglected because their interference is
substantially smaller than the self-distortion caused inside the center cell.

to (6.32), the received DL signal yjk in (6.20) can be expressed as

yjk =
√
κBS
t κUE

r E{(hjjk)Hwjk}ςjk︸ ︷︷ ︸
Desired signal over average channel

+ µUE
jk︸︷︷︸

Self-distortion

+
√
κBS
t κUE

r

(
(hjjk)

Hwjk−E{(hjjk)Hwjk}
)
ςjk

︸ ︷︷ ︸
Desired signal over “unknown” channel

+
√
κUE
r

L∑

l=1
(hljk)HµBS

l

︸ ︷︷ ︸
Transmitter distortion

+
√
κBS
t κUE

r

Kj∑

i=1
i 6=k

(hjjk)
Hwjiςji

︸ ︷︷ ︸
Intra-cell interference

+
√
κBS
t κUE

r

L∑

l=1
l 6=j

Kl∑

i=1
(hljk)Hwliςli

︸ ︷︷ ︸
Inter-cell interference

+ njk

︸︷︷︸
Noise

.

(6.44)
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The first term in (6.44) is the desired signal received over the deter-
ministic average effective channel

√
κBS
t κUE

r E{(hjjk)Hwjk}, while the
remaining terms are random variables with realizations that are un-
known to the UE. An achievable SE is obtained by treating these terms
as noise in the signal detection, as shown in the following theorem.

Theorem 6.5. With hardware impairments, the DL ergodic channel
capacity of UE k in cell j is lower bounded by

SEDL−imp
jk = τd

τc
log2(1 + SINRDL−imp

jk ) (6.45)

with
SINRDL−imp

jk =

ρjk|E{wH
jkh

j
jk}|2

∑
l,i
ρli

(
κBS
t E{|wH

li
hl
jk
|2}+(1−κBS

t )E{‖wli�hl
jk
‖2}
)

κBS
t κUE

r
− ρjk|E{wH

jkh
j
jk}|2+ σ2

DL
κBS
t κUE

r

(6.46)
where the expectations are with respect to the channel realizations.

Proof. The proof is available in Appendix C.5.4 on p. 618.

The DL SE in Theorem 6.5 generalizes Theorem 4.6 on p. 317 to
include hardware impairments. The new expression can be computed
numerically for any precoding scheme and any spatial correlation matri-
ces. There is a close connection to the UL expression in Theorem 6.2; if
we select wjk = vjk/

√
E{‖vjk‖2}, then the same expectations appear

in both the UL and DL. The main difference is that the indices (l, i)
and (j, k) are swapped in the interference terms, since UL interference
comes from the UEs and DL interference comes from the BSs. A UL-DL
duality result, similar to Theorem 4.8 on p. 321, can be established
also with hardware impairments, under the additional condition that
κUE
t = κUE

r and κBS
t = κBS

r . Since the transmitter and receiver hardware
in a device are fundamentally different, there is no practical reason for
these equalities to hold, thus we will exclude the exact duality details.
However, the duality suggests that it is sensible to select each precoding
vector based on the corresponding combining vector, also when having
hardware impairments.
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The key impacts of hardware impairments are clearly visible in
(6.46). There is a loss in desired signal power by a factor κBS

t κUE
r ,

represented by scaling the interference and noise powers as 1/(κBS
t κUE

r ).
A fraction (1−κBS

t ) of the transmitted interference power is also turned
into transmitter distortion, which is not coherently combined over the
channel; that is, E{|wH

lihljk|2} is replaced by E{‖wli � hljk‖2} for this
distortion. Another important factor, that is less visible in Theorem 6.5,
is the impact of the distortion in the UL channel estimation, which
affects the selection of the precoding vectors.

To gain further insights into the impact of hardware impairments, we
consider the case of MR precoding with wjk = ĥjjk/

√
E{‖ĥjjk‖2}, where

the average normalization is used to enable the derivation of closed-form
expressions. We will compute a closed-form SE expression for spatially
uncorrelated channels. The more general case with diagonal spatial
correlation matrices was considered in [54], while arbitrary correlation
matrices were treated in [42].

Corollary 6.6. With hardware impairments, if average-normalized MR
precoding with wjk = ĥjjk/

√
E{‖ĥjjk‖2} is used, based on the LMMSE

estimator in Theorem 6.1, and the channels are spatially uncorrelated
(i.e., Rj

li = βjliIMj for l = 1, . . . , L and i = 1, . . . ,Kl), then the SE
expression in Theorem 6.5 becomes SEDL−imp

jk = τd
τc

log2(1+SINRDL−imp
jk )

with

SINRDL−imp
jk =

ρjkpjk(βjjk)2τpψjkMj
∑
l,i
ρliβ

l
jkF

li
jk+ ∑

(l,i)∈Pjk
ρlipjk(βljk)2τpψliMlGl−ρjkpjk(βjjk)2τpψjkMj+σ̌2

DL

(6.47)
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where ψjk and ψli are given by (6.38) and

σ̌2
DL = σ2

DL
κBS
t κUE

r κUE
t κBS

r

(6.48)

F lijk =
1 + pjkβ

l
jkψli

(
1− κUE

t κBS
r + (1−κUE

t )κBS
t κBS

r (Ml−1)
)

κBS
t κUE

r κUE
t κBS

r

(6.49)

Gl = 1 + κBS
t (Ml − 1)

Mlκ
BS
t κUE

r

. (6.50)

Proof. The proof is available in Appendix C.5.5 on p. 620.

The DL effective SINR expression in (6.47) has the typical SINR
structure, with the first term in the denominator being the interference
from all UEs, the second term being additional interference from UEs
that use the same pilot, the third term subtracts the desired signal
power that appeared in the numerator, and the last term represents the
noise power. The hardware impairments affect the SINR in multiple
ways. First, there is a loss in signal power represented by increasing the
effective noise power σ̌2

DL by a factor 1/(κBS
t κUE

r κUE
t κBS

r ). This is another
instance of the “squaring effect”, where the channel estimation causes
1/(κUE

t κBS
r ) and the data transmission causes 1/(κBS

t κUE
r ). Second, the

distorted pilot sequences lead to less coherent interference from UEs
using the same pilot, but new coherent interference from all other UEs
in the network. Generally speaking, the distortion has the same impact
on the SE as in the UL, but one important difference is that the UL
expression is only affected by UL hardware quality, while the DL SE
in (6.47) is affected by the hardware quality in both directions (i.e.,
κBS
t , κUE

r , κUE
t , κBS

r ) since the channels are estimated in the UL.
To further study the coherent interference characteristics, we con-

sider the asymptotic regime with a very large number of BS antennas.

Corollary 6.7. Under the same conditions as in Corollary 6.6, SINRDL−imp
jk

with MR combining has the asymptotic limit

ρjk(βjjk)2

∑
l,i
ρli(βljk)2 ψli

ψjk

1−κUE
t

κUE
t κUE

r τp
+ ∑

(l,i)∈Pjk\(j,k)
ρli(βljk)2 ψli

ψjk
1

κUE
r

+ ρjk(βjjk)2 1−κUE
r

κUE
r

(6.51)
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as M1 = . . . = ML →∞.

Proof. This result follows from taking the limit in (6.47) and noting
that F ljk/Mj → pjkβ

l
jkψli

1−κUE
t

κUE
t κUE

r
and Gj → 1/κUE

r .

As expected, the noise and non-coherent interference vanish asymp-
totically when all BSs have a very large number of antennas. The
asymptotic SINR is the ratio between the coherent signal gain and the
coherent interference terms. The first interference term covers all UEs,
due to the break of pilot orthogonality caused by distortion, while the
second term only covers those UEs that reuse the pilot sequence. At
first sight, it seems that (6.51) is independent of κBS

t and κBS
r , which

are the hardware qualities of the BS. This is not the case since ψli/ψjk
is actually a function of κBS

r , but it indicates that the distortion caused
at the BS is non-coherently combined.

6.3.6 Impact of Hardware Impairment on DL SE

When quantifying the impact that hardware impairments have on the
DL SE, we need to consider both the hardware quality in the UL (κUE

t

and κBS
r ) and the hardware quality in the DL (κBS

t and κUE
r ). We

will now investigate which set of parameters has the largest impact
on the SE. To this end, we continue the running example that was
defined in Section 4.1.3 on p. 288. We consider M = 100, K = 10,
and the Gaussian local scattering model with ASD σϕ = 10◦. We use
Theorem 6.5 to compute the SE with M-MMSE, RZF, and MR, where
the latter is normalized as wjk = ĥjjk/‖ĥ

j
jk‖. Except for pilots, all

samples in every coherence block are used for DL data. The pilot reuse
factor that maximizes the SE is considered.

The average DL sum SE is shown in Figure 6.7. The UL hardware
quality is fixed at κUE

t = κBS
r = 0.99 in Figure 6.7a while the DL

hardware quality is varied as κBS
t = κUE

r ∈ [0.95, 1]. The opposite case
of fixed DL hardware quality with κBS

t = κUE
r = 0.99 and varying UL

hardware quality with κUE
t = κBS

r ∈ [0.95, 1] is considered in Figure 6.7b.
For all three precoding schemes, we notice that the DL hardware has a
greater impact on the DL SE than the UL hardware, particularly when
using RZF or M-MMSE. This means that it is the distortion caused



6.3. Spectral Efficiency with Hardware Impairments 437

0.95 0.96 0.97 0.98 0.99 1
0

5

10

15

20

25

30

35

40

DL hardware quality

A
ve

ra
ge

 s
um

 S
E 

[b
it/

s/
H

z/
ce

ll]

 

 

M-MMSE
RZF
MR
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Figure 6.7: Average DL sum SE as a function of the hardware quality, when the
quality is fixed in one direction and varies in the other direction. There are M = 100
antennas, K = 10 UEs, and for each point on the curves we consider the pilot reuse
factor that maximizes the SE.
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Figure 6.8: Average DL sum SE as a function of the number of BS antennas, for
different hardware qualities κ = κUE

t = κBS
r = κBS

t = κUE
r . Average-normalized MR

precoding is considered.

during the data transmission, and not the distortion in the channel
estimation, that dominates. The precoding schemes otherwise behave as
expected from the UL; that is, M-MMSE gives a substantially larger SE
than MR, but is more sensitive to hardware impairments. RZF provides
a performance relatively close to M-MMSE.

6.3.7 MR Precoding with Many Antennas

We will now investigate the convergence speed to the asymptotic limit
in Corollary 6.7, when the number of antennas in all cells grows without
bound; that is, M = M1 = . . . = ML → ∞. To this end, we revisit
the running example that was defined in Section 4.1.3 on p. 288, but
this time we use the uncorrelated Rayleigh fading model. We consider
K = 10, f = 2, and average-normalized MR precoding. Except for
pilots, all samples in every coherence block are used for DL data.

For simplicity, we assume that all hardware quality factors are
equal to κ; that is, κ = κUE

t = κBS
r = κBS

t = κUE
r . The average

DL sum SE is shown in Figure 6.8 for different hardware qualities:
κ ∈ {0.9, 0.95, 0.99, 1}. The asymptotic limit is indicated in all cases.
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We notice that the convergence to the asymptotic limit is slow
when having ideal hardware (i.e., κ = 1); for example, with M = 2000
antennas, we have only reached 61% of the asymptotic SE. Roughly
M = 105 antennas are required to reach the limit. As we reduce the
hardware quality, the SE reduces substantially but the convergence speed
to the asymptotic limit is also faster. With κ = 0.9, we obtain 79% of
the asymptotic SE with M = 500 and 92% with M = 2000. To explain
this phenomenon, we recall that in order to reach the asymptotic limit,
we need the non-coherent interference and noise to become negligible as
compared to the coherent interference sources. This requires a very large
M when having ideal hardware, since the non-coherent interference
from the own cell is received through a channel with much stronger
gain than the coherent interference from other cells (cf. Figure 6.5a for
an illustration of this in the UL). As the coherent self-distortion caused
by hardware impairment grows, much fewer antennas are needed to
make the non-coherent interference weaker than the self-distortion—a
few thousand antennas are sufficient to be close to the asymptotic limit.
This example suggests that there is a practical limit on the number of
antennas that is useful to deploy.

Figure 6.9 considers the case of a fixed UE hardware quality of
κUE
t = κUE

r = 0.99 and varying hardware qualities at the BS: κBS
t =

κBS
r ∈ {0.9, 0.95, 0.99, 1}. A slightly higher SE is achieved when the

BSs’ hardware quality is high as compared to low, but the differences are
marginal. The asymptotic limits are shown and these are not identical
but almost the same. Hence, the major differences observed in Figure 6.8
are mainly due to variations in the UEs’ hardware quality.

In summary, the practical implications of asymptotic results are
larger with hardware impairments, than with ideal hardware, since there
is a much faster convergence to the limits. It is primarily the hardware
quality of the UEs that determines the SE. This is a positive result as
it allows us to decrease the hardware quality of the BSs.

6.4 Hardware-Quality Scaling Law

The asymptotic UL and DL SE expressions in Section 6.3 reveal that the
impact of hardware impairments at the BS vanishes almost completely
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Figure 6.9: Average DL sum SE as a function of the number of BS antennas,
for κUE

t = κUE
r = 0.99 and different hardware qualities at the BS: κBS

t = κBS
r ∈

{0.9, 0.95, 0.99, 1}. Average-normalized MR precoding is considered.

as the number of BS antennas grows. Hence, low-quality BS hardware
can be used with only a minor SE loss, which suggests that Massive
MIMO utilizes the hardware very efficiently; in other words, it achieves
a high HE. The asymptotic analysis holds for any fixed values of the
hardware quality factors κBS

t and κBS
r . We will now show that we can

even decrease κBS
t and κBS

r with the number of antennas and still make
the impact of the hardware quality vanish asymptotically. We begin by
analyzing the UL.

Corollary 6.8. Consider κBS
r = κ/M ε

j , where κ ∈ (0, 1] and ε > 0 are
constants. Under the same conditions as in Corollary 6.3, SINRUL−imp

jk

with MR combining has the asymptotic limit




(pjkβjjk)2

∑
l,i

(pliβjli)2 1−κUE
t

(κUE
t

)2τp
+

∑
(l,i)∈Pjk\(j,k)

(pliβ
j
li

)2

κUE
t

+(pjkβjjk)2 1−κUE
t

κUE
t

ε < 1
2

0 ε > 1
2

(6.52)

as Mj →∞.

Proof. This results follows from substituting κBS
r = κ/M ε

j into (6.52)
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and then taking the limit. In particular, we notice that F jli/Mj →
pliβ

j
liψjk

1−κUE
t

(κUE
t )2 and σ2

UL
(κUE
t κBS

r )2Mj
→ 0 if ε < 1/2, while these terms

diverge for ε > 1/2. Moreover, Gj → 1/κUE
t if ε < 1.

This corollary proves that we can gradually tolerate lower BS hard-
ware quality as the number of antennas increases. Suppose M = M1 =
. . . = ML. Corollary 6.8 then proves that we decrease κBS

r roughly as
1/
√
M and still achieve the same asymptotic UL SE limit as derived in

Corollary 6.4 for a fixed hardware quality. However, we can expect the
convergence speed to this limit to be slower if we gradually degrade the
hardware quality.

We refer to Corollary 6.8 as a hardware-quality scaling law. The
intuition behind this result can be seen in (6.39), where the desired
signal power grows as Mj while the effective noise term is proportional
to 1/(κBS

r )2 (or M2ε
j /κ

2 using the notation in the corollary). When the
scaling law is satisfied, the signal power grows faster than the effective
noise term, which is sufficient to reach a non-zero limit. A similar result
can be obtained in the DL.

Corollary 6.9. Consider M = M1 = . . . = ML, κBS
t = κ/M ε1 , and

κBS
r = κ/M ε2 , where κ, κ ∈ (0, 1] and ε1, ε2 > 0 are constants. Under

the same conditions as in Corollary 6.6, SINRDL−imp
jk with average-

normalized MR precoding has the asymptotic limit




ρjk(βj
jk

)2

∑
l,i

ρli(βljk)2 ψ
∞
l

ψ∞
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(1−κUE
t

)
κUE
r κUE
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τp

+
∑

(l,i)∈Pjk\(j,k)

ρli(βljk)2

κUE
r

ψ∞
l

ψ∞
j

+ρjk(βj
jk

)2 1−κUE
r

κUE
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ε1+ε2<1

0 ε1+ε2>1
(6.53)

as M →∞, where

ψ∞j = 1
∑
l′,i′

pl′i′β
j
l′i′ + σ2

UL
, ψ∞l = 1∑

l′,i′
pl′i′β

l
l′i′ + σ2

UL
. (6.54)

Proof. This results follows from substituting κBS
t = κ/M ε1 and κBS

r =
κ/M ε2 into (6.53) and then taking the limit. In particular, we notice that
σ̌2

DL/M → 0 and F lijk/M = pjkβ
l
jkψ
∞
li (1−κUE

t )/(κUE
r κUE

t ) if ε1 + ε2 < 1,
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while these terms diverge for ε1 + ε2 > 1. Moreover, Gj → 1/κUE
r if

ε1 < 1, ψjk → ψ∞j , and ψli → ψ∞l .

This corollary provides a DL hardware-quality scaling law that is
similar to the UL scaling law in Corollary 6.8, but both the transmitter
and receiver hardware play a role in the DL. We can either decrease
κBS
t and κBS

r jointly as 1/
√
M or decrease one faster than the other as

long as the product κBS
t κBS

r does not decay faster than 1/M .
The UL and DL hardware-quality scaling laws give further theo-

retical evidence that Massive MIMO networks have a higher HE than
conventional cellular networks. More precisely, the network can oper-
ate well using lower BS hardware quality than conventional networks
and the quality can be gradually reduced as the number of antennas
increases. This fact might be incredibly important for the practical
adoption of Massive MIMO since it means that one can deploy the
technology without increasing the hardware cost linearly with M . Sim-
ilarly, the physical size of the hardware components and their power
consumption may not grow, as compared to contemporary systems,
if we reduce the hardware quality as more antennas are added. The
exact consequences are hard to quantify, but it is not impossible that a
well-designed Massive MIMO implementation would achieve the same,
or even lower, cost, size, and/or circuit power as in conventional net-
works [102, 153]. Below, we briefly discuss a few specific challenges and
opportunities in the hardware design.

6.4.1 Low-Resolution ADCs

An impairment source that has received particular attention from re-
searchers is the quantization noise, caused by finite-resolution ADCs.
Resolutions of 4–20 bit per I/Q component are being considered in
different wireless scenarios [90]. In LTE, an ADC resolution of at least
10 bits is needed to satisfy the EVM requirements [144, Section 14.8.3],
but it is common to have a substantial design margin (e.g., 15-bit ADCs)
to allow for impairments in other components. Since the I/Q compo-
nents are quantized separately, a Massive MIMO BS with M antennas
requires 2M ADCs. The power consumption of these ADCs grows with
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the system bandwidth, which makes it highly desirable to operate with
reduced ADC resolution in wideband systems. Fortunately, the UL
hardware-quality scaling law manifests that the bit resolution of each
ADC can be reduced as M increases [53]. There are plenty of papers
that specifically studies the impact of low-resolution ADCs on various
performance metrics [103, 306, 343, 327]. The common conclusion is
that, with M = 100 antennas, ADCs with 3–4 bits are sufficient to op-
erate close to the performance of a system with infinite ADC resolution.
These numbers are typically achieved with UL power control that makes
the UEs’ signals equally strong at the receiver. A larger dynamic range
is needed if the BS receives a superposition of strong and weak signals,
to avoid that the weaker signals drown in the quantization noise. It is
also possible to operate with 1-bit ADCs at the BS, which can greatly
simplify the hardware design since only the sign of the received signal
must be measured and not the signal power. The channel estimation
and detection are more challenging but still possible in such systems
[218, 99]. In contrast to having 3–4 bit ADCs, the performance loss
with 1-bit ADCs is quite substantial, particularly since it is hard to
accurately estimate the channels, but the loss reduces when the number
of antennas increases [220, 226]. In principle, also the bit resolution of
the DACs can be reduced [136, 158, 356], but this is less desirable since
it leads to increased out-of-band radiation in the DL; see Section 6.4.3.

6.4.2 Phase Noise

The hardware characteristics have been assumed to be stationary in
this monograph, which resulted in the distortion terms being stationary
random processes (within a coherence block). Phase noise in the LOs
is an example of a non-stationary impairment source, which creates
random phase drifts that accumulate over time. The modeling and
impact of phase noise have been considered in [310, 101, 92, 188, 258,
213, 107], among others. These models have recently been used in the
Massive MIMO literature to compute capacity bounds and analyze their
behavior [53, 54, 179, 265, 262]. Since each channel is estimated once
per coherence block, the phase noise can be absorbed into the channel
fading if the accumulated drift within a block is small. Hence, it is
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mainly in scenarios with long channel coherence time (or low hardware
quality) that the phase noise effect is substantial. In those cases, it can
be worthwhile to send pilots more frequently [53] or to use decoded
data to track the phase offsets [215]. The analysis and modeling details
depend on the modulation format (e.g., OFDM or single-carrier), but the
qualitative conclusions are basically the same. If there is one LO per BS
and per UE, then phase noise has a similar impact on the SE in Massive
MIMO as in single-antenna systems; the self-distortion caused by phase-
noise is coherently combined, just as the desired signal. However, if
each BS antennas has a separate LO, the phase noise realizations are
independent between the antennas. The resulting distortion is then
non-coherently combined over the array, which implies that the impact
reduces as the number of antennas increases. Reduced-quality LOs can
then be used and a hardware-quality scaling law for phase noise has
been established in [53].

6.4.3 Out-of-Band Radiation

The analysis in this section shows that Massive MIMO networks are less
affected by in-band distortion, caused by hardware impairments, than
conventional networks. This paves the way for using simpler hardware,
but only if the higher distortion level does not impair with other systems.
It is the total power of the interfering signals that matters, not the
fraction of it that is distortion.

One important point that is not captured by the complex baseband
model considered in this section is the out-of-band radiation. Some
hardware impairments lead to spectral regrowth of the analog transmit
signal and effectively increase the distortion caused to adjacent frequency
bands. This is the case for PA non-linearities and low-resolution DACs.
There are rigid requirements on the maximum out-of-band radiation
levels in wireless networks. The requirements can be on the maximum
absolute power of the out-of-band radiation or on the maximum relative
power, as in the adjacent-channel leakage ratio (ACLR) metric. Initial
studies on the out-of-band radiation in the Massive MIMO are provided
in [136, 227, 228, 62]. There are two important messages: i) The average
out-of-band radiation is the same as in a single-antenna system, using
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the same hardware quality. To control the absolute power of the out-of-
band radiation, as we reduce the hardware quality, we either need to
reduce the transmit power or send a signal with a reduced bandwidth
(which proportionally reduces the SE). ii) The DL out-of-band radiation
is emitted non-isotropically. If only one UE is served in the DL by the
Massive MIMO BS, the resulting out-of-band radiation has a strong
spatial directivity, similar to the precoded in-band signal. This effect is
smeared out when multiple UEs are spatially multiplexed.

6.4.4 Reciprocity Calibration

The DL transmission that we have described in this monograph relies on
channel reciprocity; that is, if hjli is the UL channel, then (hjli)T is the
corresponding DL channel. We have simplified the notation by letting
(hjli)H be the DL channel, which can be done without loss of generality.
However, there is another issue with reciprocity: the RF propagation
channels are reciprocal by nature, but the end-to-end channels are
also affected by the transceiver hardware. Since different hardware
components are used at the BS and UE for transmission and reception,
there is no reason for the hardware to be reciprocal. The actual DL
channel is commonly modeled as cli(hjli)TDj [374], where cli ∈ C models
the reciprocity mismatch at UE i in cell l and the diagonal matrix
Dj ∈ CMj×Mj represents the mismatches at the Mj antennas of BS j.
These parameters describe the scaling and phase mismatches between
the UL and DL, and can be treated as deterministic parameters since
it takes hours (or at least minutes) for them to change in practice [329].
This makes it is feasible to estimate and calibrate the system so that
channel reciprocity holds and the overhead of doing so appears to be
negligible. There are plenty of reciprocity calibration algorithms, whereof
some were developed for general TDD systems [248, 133, 374] and some
particularly for Massive MIMO [300, 331, 279, 330]. Perfect reciprocity
calibration should not be expected from any of these schemes, but if the
estimation errors are independent across antennas, the distortion caused
by the residual reciprocity mismatch will combine non-coherently over
the array—similar to other types of hardware impairments.
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6.4.5 Example of the Hardware-Quality Scaling Law

The hardware-quality scaling law for the UL in Corollary 6.8 will
now be exemplified, by continuing the running example that was de-
fined in Section 4.1.3 on p. 288. We consider average-normalized MR
combining, K = 10, f = 2, κUE

t = 0.997, and κBS
t = κ/M ε. We

further assume κ = 0.997 and consider different scaling exponents:
ε ∈ {0, 1/243, 1/81, 1/27, 1/9, 1/3, 1}. Observe that ε = 0 represents
a fixed BS hardware quality. Except for pilots, all samples in every
coherence block are used for UL data.

The average UL sum SE is shown in Figure 6.10a, as a function of
the number of BS antennas (notice the logarithmic horizontal scale).
All curves increase with M , except for ε = 1 which is reported as
“faster than scaling law” in the figure. This is in line with the scaling
law, which prescribes that the SE only approaches a non-zero limit if
ε < 1/2. This asymptotic limit is shown in the figure. The curves ε ∈
{0, 1/243, 1/81, 1/27} provide similar SE and approach the asymptotic
limit at around M = 104. We can thus degrade the BS hardware quality
in these ways and only get a limited SE loss. In contrast, ε = 1/9
and ε = 1/3 give more substantial performance losses, but the same
asymptotic limit is approached as M →∞.

To understand the practical implications of these scaling laws, we
show the corresponding EVM values in Figure 6.10b, computed based
on (6.7). The EVM takes values between 0 (ideal hardware) and 1 (all
signals are replaced with distortion). For any ε > 0, the EVM will
approach 1 as M →∞. Nonetheless, we can achieve a high asymptotic
SE if we use ε < 1/2. Practical transceivers typically have an EVM below
0.1, thus an EVM of 0.3 represents unusually low hardware quality. By
looking at both parts of Figure 6.10, we notice that ε = 1/243, ε = 1/81,
and ε = 1/27 lead to small SE losses and EVMs in the range up to
0.5 (for M < 104). These scaling exponents thus strike a good balance
between high SE and the use of low-resolution hardware.

Another way to utilize Figure 6.10 is to select a target sum SE
and then identify different combinations of M and ε that deliver this
performance. We notice that more antennas are required when ε in-
creases, but the hardware quality per antenna is also reduced. In other
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antennas, when applying the hardware-quality scaling law in Corollary 6.8.
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words, one can compensate for a reduced hardware quality by adding
antennas.

In summary, the hardware-quality scaling law allows for a very rapid
degradation in hardware quality, while achieving the same asymptotic
limit as with fixed hardware quality. A small scaling exponent (e.g.,
ε = 1/27 or ε = 1/81) is sufficient to allow for practical low-quality
hardware at the BS and a low SE loss. Note that these results are
obtained using MR combining, while schemes such as RZF and M-
MMSE are likely to lose more in SE from degrading the hardware.
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6.5 Summary of Key Points in Section 6

• Practical transceivers are affected by hardware impairments,
which can be mitigated by compensation algorithms but not
fully removed.

• To quantify the worst-case impact of hardware impairments
on the SE, it is sufficient to use models with an independent
distortion scalar term added at the UE and an independent
distortion vector added at the BS.

• Distortions from the BS are non-coherently combined, while
the self-distortion caused by the UEs is coherently combined,
similar to the desired signal. This makes the hardware quality
of the UEs particularly important.

• Distortion from other UEs can be suppressed by precoding
and combining (e.g., RZF or M-MMSE) similar to inter-user
interference.

• The distortion caused by the BS and the self-distortion are
roughly the same for all precoding and combining schemes.

• Self-distortion might drown in the interference when using
MR, while interference-suppressing processing schemes, such
as RZF and M-MMSE, are more sensitive to it. This creates
a limited interference visibility range, outside which the
interference is negligible compared to the self-distortion.

• Massive MIMO networks have a high HE, since they make
more efficient use of the BS hardware than conventional
networks. For example, for any fixed BS hardware quality, the
impact of its distortion vanishes as the number of antennas
grows. The impact of distortion is also smaller the more UEs
are served in the cell.
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• The high HE implies that the BS hardware quality can be
gradually decreased as the number of antennas increases
while approaching a non-zero asymptotic SE limit. The
hardware-quality scaling law describes at which rate the
quality can be degraded. As a consequence, the hardware
cost of Massive MIMO needs not increase linearly with the
number of antennas.

• When reducing the hardware quality, the increased out-of-
band radiation caused by spectral regrowth is an important
practical issue. It can be dealt with by reducing the transmit
power and/or the bandwidth, at the cost of reduced SE.



7
Practical Deployment Considerations

This section describes some important tradeoffs and considerations for
the design, optimization, and deployment of Massive MIMO in practical
networks. While the previous sections described the fundamental theory
that is generally well understood, the topics covered by this section
are still under development at the time of writing this monograph.
Section 7.1 describes power allocation schemes for the maximization
of network utility functions. Key topics in spatial resource allocation
are outlined in Section 7.2, which include pilot assignment, scheduling,
and load balancing. Channel modeling is considered in Section 7.3 with
focus on the spatial characteristics that are resolved by large arrays.
The configuration and deployment of antenna arrays are covered by Sec-
tion 7.4. Massive MIMO technology for hotspots operating at mmWave
frequencies is described in Section 7.5, while the role of Massive MIMO
in heterogeneous networks is described in Section 7.6. We conclude with
a case study in Section 7.7, taking some of the practical considerations
into account, and a summary of key points in Section 7.8.

451



452 Practical Deployment Considerations

7.1 Power Allocation

Although the SE analysis in the previous sections applies to arbitrarily
selected transmit powers, the numerical results were based on the
assumption of equal transmit power per UE, in both UL and DL. This
is generally not the optimal strategy if we want to maximize some
utility function. Firstly, the sum SE can be increased by unequal power
allocation, exploiting the different propagation conditions of the UEs.
Secondly, the sum SE only measures the aggregated throughput of the
network, while ignoring how fairly it is distributed among the UEs. This
can lead to substantial unfairness. In addition to the sum SE utility,
there are alternative utility functions that balance between aggregate
throughput and fairness [46]. In this section, we describe several different
network utility functions and provide power allocation schemes that
maximize them. The channel hardening makes power allocation different
in Massive MIMO than in single-antenna systems. There is no need
to adapt the transmit powers to small-scale fading variations, but
only to the large-scale fading characteristics. This unique characteristic
of Massive MIMO makes advanced power allocation schemes, that
previously were overly complex, practically feasible.

In a network with ∑L
l=1Kl UEs, there are equally many SE expres-

sions to take into consideration—in both UL and DL. These SEs are all
connected due to interference. This can, for example, be seen from the
DL SE in Theorem 4.6 on p. 317, which takes the form

SEDL
jk = τd

τc
log2


1 + ρjkajk

L∑
l=1

Kl∑
i=1

ρliblijk + σ2
DL


 (7.1)

for UE k in cell j, where

ajk = |E{wH
jkh

j
jk}|2 (7.2)

blijk =




E{|wH

lihljk|2} (l, i) 6= (j, k)
E{|wH

jkh
j
jk|2} − |E{wH

jkh
j
jk}|2 (l, i) = (j, k).

(7.3)

Notice that SEDL
jk in (7.1) is an increasing function of ρjk, which is

the DL transmit power allocated to this UE, while it is a decreasing



7.1. Power Allocation 453

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

of UE 1 [bit/s/Hz]

of
 U

E 
2 

[b
it/

s/
H

z]

Max-min fairness

Max sum SE

Max product SINR

45°

45°

Pareto boundary

SE DL
11

SE
D

L
12

Figure 7.1: Example of an SE region (shaded) with different combinations
(SEDL

11 , SEDL
12 ) of SEs that can be achieved by different power allocations. The three

operating points that maximize the utility functions in (7.4) are indicated.

function of the transmit power ρli of any other UE. Hence, there is a
conflicting relation between the SEs of two UEs, not only due to mutual
interference but also because each BS has a limited power budget to
allocate among its UEs.

This conflicting relation can be illustrated by an SE region with∑L
l=1Kl dimensions, which contains all simultaneously achievable SE

combinations. An example is provided in Figure 7.1 for the DL with
L = 1 and K1 = 2 UEs. The shaded region contains all (SEDL

11 , SEDL
12 )-

points that can be achieved by different allocations of power between the
UEs. In this example, we assumed that UE 1 has a better channel than
UE 2, which results in an SE region that contains larger SE values for
UE 1. Any point in the interior of the SE region is strictly suboptimal
because it is possible to jointly increase SEDL

11 and SEDL
12 by changing

the power allocation. Hence, an efficient network must operate on the
outer boundary of the SE region, which is referred to as the Pareto
boundary. For points on the Pareto boundary, we cannot increase the
SE of a UE without decreasing the SE of another UE. The shape of the
Pareto boundary describes the conflicting relation [47].
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There are infinitely many points on the Pareto boundary, so which
point should we choose? No objective answer exists to this question
because the typical goal of every UE is to maximize its own SE [47],
which would in principle require to switch off all other UEs. As a network
designer, we need to find a subjective balance between the individual
goals of the UEs. A structured way to do this is by defining a network
utility function, U(SE11, . . . ,SELKL), that takes the SEs of all UEs as
inputs and gives a scalar that measures the utility as output [250]; that
is, the larger the better. To keep it general, SEjk for UE k in cell j can
either denote the UL SE SEUL

jk or the DL SE SEDL
jk . The utility function

is to be maximized and should be selected so that the input is more
preferred the larger the output is. Some prominent examples of utility
functions are:

U(SE11, . . . ,SELKL) =





∑L
j=1

∑Kj
k=1 SEjk Max sum SE

minj,k SEjk Max-min fairness
∏L
j=1

∏Kj
k=1 SINRjk Max product SINR

(7.4)

where SINRjk denotes the effective SINR of SEjk. Notice that “max”
indicates that we want to maximize these utilities, while the actual
utility functions are the sum SE, minimum SE, and product of the
SINRs, respectively.

By definition, the max sum SE utility leads to the highest aggregate
SE, but without any fairness guarantees—some UEs with bad channel
conditions might get zero SE when maximizing this utility. By normaliz-
ing the sum SE by the number of UEs, we can also interpret this utility
as the arithmetic mean SE. The other extreme is max-min fairness,
which provides complete fairness by only counting the SE achieved by
the weakest UE in the network. One can easily convince oneself that
maximizing this utility function results in the same SE for everyone,
thus a UE has no benefit of having a good channel condition. There
is a variety of tradeoffs between these extremes, represented either by
weighing the SEs of the UEs differently in (7.4) or by using alternative
functions; for example, the geometric mean or the harmonic mean of
the SEs [46, 176, 221]. The book [210] advocates a heuristic approach
for maximizing the minimum SE locally in each cell, while allowing for
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different SE levels in different cells. This is made possible by neglecting
coherent interference and assuming that every BS and at least one UE
per cell transmit with full power.

The max product SINR utility is also defined in (7.4). To understand
the motivation behind maximizing the product of the effective SINRs,
let us consider the DL and notice that
L∑

j=1

Kj∑

k=1
SEDL

jk =
L∑

j=1

Kj∑

k=1

τd
τc

log2
(
1 + SINRDL

jk

)

≥
L∑

j=1

Kj∑

k=1

τd
τc

log2
(
SINRDL

jk

)
= τd
τc

log2




L∏

j=1

Kj∏

k=1
SINRDL

jk




(7.5)
which shows that this utility seeks to maximize a lower bound on the
sum SE where the “1+” term is neglected in every logarithm. This
has little effect on UEs that support high SINRs, but underestimates
the SEs of the weakest UEs. Hence, a maximization of the product of
the SINRs leads to higher SEs for the weakest UEs, as compared to
maximizing the sum SE. The max product SINR utility also guarantees
that every UE gets a non-zero SE, thus this utility function provides
more fairness than the sum SE utility. Recall from Theorem 4.13 on
p. 346 that, with M-MMSE precoding, the SINR of every UE increases
without bound when the number of antennas grows large. The “1+”
in the logarithms is then negligible and maximizing the product SINR
or the sum SE is asymptotically the same thing. When there are very
many antennas, equal power allocation will be nearly optimal for both
utilities, since the SNR variations created by power allocation have
little impact on the SEs when everyone has very high SINRs.

The points in the SE region that maximize the three utility functions
in (7.4) are exemplified in Figure 7.1. The max-min fairness point is the
intersection between the Pareto boundary and a line from the origin
with 45◦ slope. This is the line that contains all points where the UEs
have equal SE. The max sum SE point lies on another line with 45◦
slope, which is defined by the equation SEDL

11 + SEDL
12 = v, where v

represents the maximum value of the sum SE. Every point on this line
would give this sum SE, but the max sum SE point is the one that
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intersects with the SE region. Note that this point gives substantially
higher SE to UE 1, compared with max-min fairness, at the expense of
decreasing the SE of UE 2. Finally, the max product SINR point gives
slightly higher SE to the weaker UE 2, but in this example, the point is
still very close to the line that maximizes the sum SE.

7.1.1 Downlink Power Allocation

We will now use the utility framework developed above to optimize
the DL power allocation, for the case when the hardening bound in
Theorem 4.6 on p. 317 is used. In practice, the transmit power of a
BS is limited by regulations and hardware constraints, which we model
by a maximum total transmit power PDL

max ≥ 0 per BS. The resulting
utility maximization problem is

maximize
ρ11≥0,...,ρLKL≥0

U(SEDL
11 , . . . ,SEDL

LKL
) (7.6)

subject to
Kj∑

k=1
ρjk ≤ PDL

max, j = 1, . . . , L

where the DL transmit powers ρ11, . . . , ρLKL are the ∑L
l=1Kl optimiza-

tion variables. The actual power transmitted by BS j is ∑Kj
k=1 ρjk. We

can use this problem formulation along with any precoding scheme
and we keep the precoding vectors fixed while optimizing the transmit
powers. The type of power allocation problems in (7.6) has been studied
for decades [81, 341, 46] and the computational complexity of finding
the solution strongly depends on the choice of the utility function U .
The max sum SE problem is non-convex and hard to solve to global
optimality [201], but there exist successive approximation algorithms
that find locally optimal solutions in polynomial time [341] and global
optimization algorithms that find the global optimum with a complexity
that grows exponentially with the number of UEs [269]. These methods
can be used for benchmarking, but are of limited practical use. See
Appendix B.6 on p. 575 for details on practical optimization algorithms,
as well as definitions of linear, convex, and geometric programs (the
three problem categories that will be of importance in this section).
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The solution to the power allocation problem in (7.6) depends on
ajk in (7.2) and blijk in (7.3), which are the average channel gains and
average interference gains, respectively. The average is computed with
respect to the small-scale fading realizations so that the optimized
power allocation is only a function of the channel statistics and the
choice of precoding. The same power allocation solution can be used
for many coherence blocks, in both the frequency and time domains
(cf. Figure 2.1). It is mainly the macroscopic mobility of UEs that
determines the time interval over which the channel statistics are static;
see Remark 2.3 on p. 225. This is a key feature of Massive MIMO as
compared to systems with few antennas, in which there is no channel
hardening and hence a need to adapt the power allocation to the
substantial power variations that occur between coherence blocks in
both time and frequency. The bottom line is that Massive MIMO
systems can afford more complex power allocation schemes since the
same solution can be used for many coherence blocks.

When the max-min fairness or max product SINR utility functions
are used, the globally optimal solution to (7.6) can be obtained efficiently,
as shown by the following theorems.

Theorem 7.1. The max-min fairness problem, for given values of ajk
and blijk, can be expressed as

maximize
ρ11≥0,...,ρLKL≥0,γ≥0

γ (7.7)

subject to ρjkajk
L∑
l=1

Kl∑
i=1

ρliblijk + σ2
DL

≥ γ, j = 1, . . . , L, k = 1, . . . ,Kj

Kj∑

k=1
ρjk ≤ PDL

max, j = 1, . . . , L

and the globally optimal solution is obtained by Algorithm 1, to a
tolerance ε > 0.

Proof. The first step is to notice that maximization of minj,k SEDL
jk is

equivalent to maximization of minj,k SINRDL
jk . Using the latter utility

function, we obtain (7.7) by writing (7.6) on epigraph form [67]; that
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is, to introduce the auxiliary variable γ that must satisfy the constraint
SINRDL

jk ≥ γ for all j, k, and maximize that variable instead. Moreover,
we notice that the constraints in (7.7) are linear in the power parameters.
The SINR constraints can also be written in the linear form ρjkajk ≥
γ(∑L

l=1
∑Kl
i=1 ρliblijk+σ2

DL) for any fixed value of γ. Hence, we can solve
(7.7) as a linear feasibility problem when γ is fixed. If we solve this
subproblem and the SINR constraints SINRDL

jk ≥ γ are satisfied for a
given value of γ, we need to increase the transmit powers as γ increases
to keep the constraints satisfied. We can thus make a line search over
γ to find the largest value for which all power constraints are satisfied
when solving the feasibility problem. Algorithm 1 finds that value, to
a tolerance ε, by bisection over the search range between γ = 0 and
γ = minj,k PDL

maxajk/σ
2
DL, where the latter is the effective SINR of the

weakest UE when neglecting all interference.

This theorem shows that the max-min fairness problem can be solved
to global optimality by Algorithm 1, which solves a sequence of linear
feasibility problems. Each subproblem is similar to the classical power
optimization works [64, 370, 360] that find the minimum power that
satisfies given SINR constraints. Appendix B.6 on p. 575 describes how
such subproblems are solved by general-purpose algorithms. The outer
while-loop in the algorithm performs a bisection search for the optimal
SINR value, which means that the search space for the max-min SINR
value is halved in every iteration. The convergence is thus very fast.

Theorem 7.2. The max product SINR problem, for given values of ajk
and blijk, can be expressed as

maximize
ρ11≥0,...,ρLKL≥0,c11≥0,cLKL≥0

L∏

j=1

Kj∏

k=1
cjk (7.8)

subject to
L∑

l=1

Kl∑

i=1

cjkρliblijk
ρjkajk

+ cjkσ
2
DL

ρjkajk
≤ 1,

j = 1, . . . , L, k = 1, . . . ,Kj

Kj∑

k=1
ρjk ≤ PDL

max, j = 1, . . . , L
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Algorithm 1: Bisection algorithm for solving the max-min fair-
ness problem in (7.7).

Input : {ajk}, {blijk}, PDL
max, ε

Output : γlower, {ρopt
jk }

/* Initialization */
γlower ← 0
γupper ← minj,k PDL

maxajk/σ
2
DL

ρopt
jk ← 0 for all j, k

/* Bisection over potential SINR values */
do

γcandidate ← γlower+γupper

2
Solve the linear feasibility problem

find ρ11 ≥ 0, . . . , ρLKL ≥ 0

subject to γcandidate




L∑

l=1

Kl∑

i=1
ρliblijk + σ2

DL


− ρjkajk ≤ 0,

j = 1, . . . , L, k = 1, . . . ,Kj

Kj∑

k=1
ρjk ≤ PDL

max, j = 1, . . . , L

if feasible then
γlower ← γcandidate

ρopt
jk ← ρjk for all j, k, based on the solution to the
feasibility problem

else
γupper ← γcandidate

while γupper − γlower > ε
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which is a geometric program.

Proof. Inserting the max product SINR utility function into (7.6) yields

maximize
ρ11≥0,...,ρLKL≥0

L∏

j=1

Kj∏

k=1

ρjkajk
L∑
l=1

Kl∑
i=1

ρliblijk + σ2
DL

(7.9)

subject to
Kj∑

k=1
ρjk ≤ PDL

max, j = 1, . . . , L

from which (7.8) follows by introducing the auxiliary variables cjk such
that

cjk




L∑

l=1

Kl∑

i=1
ρliblijk + σ2

DL


 ≤ ρjkajk (7.10)

and by maximizing ∏L
j=1

∏Kj
k=1 cjk instead. Finally, we notice that the

objective function and the constraint functions in (7.8) are posynomials,
thus it is a geometric program.

This theorem shows that the max product SINR problem can also
be solved efficiently, but this time as a geometric program. The notion
of a geometric program is defined in Appendix B.6 on p. 575. Geometric
programs can also be transformed into convex programs by a change of
variable; see [66, 81] or Appendix B.6 for details.

The optimal power allocation solutions in Theorems 7.1 and 7.2
are straightforward to obtain using either general-purpose solvers of
linear/geometric programs or dedicated implementations. Alternatively,
distributed algorithms can be developed by using decomposition meth-
ods [250]. The considered utility maximization problems have a total
power constraint per BS, but other types of constraints can be also
included; for example, to limit the minimum or maximum power allo-
cated per UE or to limit the average interference that is caused to a
particular UE in the network. The algorithmic solutions provided by
Theorems 7.1 and 7.2 can still be applied, as long as the additional
constraints are linear or geometric, respectively.
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Remark 7.1 (Per-antenna power constraints). One type of additional
constraint that cannot be treated in the framework described above is
per-antenna (peak) power constraints, which are required in practice to
handle the limited dynamic range of the individual power amplifiers.
If all BS antennas exhibit roughly the same large-scale fading value
to a UE (in terms of the diagonal elements of the spatial correlation
matrix being roughly the same), the precoding will divide the transmit
power almost equally over the antennas. The small-scale fading creates
variations within a coherence block, but these are averaged out since the
signals from many different coherence blocks separated in the frequency
domain are transmitted simultaneously. The fact that the signals to
different UEs are spatially multiplexed also contribute to this effect. In
these cases, the per-antenna constraints can be reasonably neglected.
Otherwise, we need to find an alternative solution. One approach is
to take the solution from one of the optimization problems above and
then heuristically reduce the total transmit power of each BS so that
all per-antenna constraints are satisfied. It is also possible to optimize
the precoding vectors jointly with the power allocation, as done in [346,
367, 46], but then the number of optimization variables is proportional
to the number of antennas and, thus, very large in Massive MIMO.

Example of DL SE with Different Utility Functions

To illustrate the effect of different power allocation schemes on the
individual SEs of the UEs, we continue the running example that was
defined in Section 4.1.3 on p. 288. We considerM = 100, K = 10, f = 2,
and spatially correlated channels based on the Gaussian local scattering
model with ASD σϕ = 10◦. Moreover, we assume that the total DL
power per BS is PDL

max = 30 dBm. Except for pilots, all samples in each
coherence block are used for DL data transmission.

Figure 7.2 shows CDF curves of the UEs’ individual DL SEs, where
the randomness is due to the UE locations and shadow fading realiza-
tions. We consider MR, RZF, and M-MMSE precoding and compare
three power allocation schemes: i) Equal power allocation of 20 dBm
per UE; ii) Max-min fairness; iii) Max product SINR. The latter two
are implemented using Theorems 7.1 and 7.2.
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Figure 7.2: CDF of the DL SE per UE for the running example with M = 100,
K = 10, f = 2, and using the Gaussian local scattering model with ASD σϕ = 10◦.
We compare three power allocation schemes applied with MR, RZF, or M-MMSE
precoding.

The general observation from Figure 7.2 is that, irrespective of the
precoding scheme, the CDF curve with max product SINR is to the
right of the equal power allocation curve, which in turn is to the right
of the max-min fairness curve. This basically means that every UE will,
statistically speaking, achieve better performance with max product
SINR power allocation than with the other schemes.

If we look at the tails of the CDF curves, we notice that this general
observation is not fully accurate. The UEs with the 10% strongest
channels could achieve slightly higher SE using equal power allocation.
Similarly, a small fraction of the UEs is better off with max-min fairness.
For a UE at a given location, the simulation data shows that there is
around 5% chance that this UE will achieve its highest SE with max-min
fairness. However, for a UE that is placed at a random location and that
requires a certain SE level, the chance that it will be supported is always
larger with max product SINR power allocation than with max-min
fairness—because the CDF curves with max product SINR in Figure 7.2
are to the right of the max-min fairness curves, except at SE levels very
close to zero. Table 7.1 shows the SE level that is guaranteed to 95% of
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Scheme Max-min fairness Equal power Max product SINR
M-MMSE 0.40 1.67 1.83

RZF 0.67 1.38 1.44
MR 0.49 1.05 0.91

Table 7.1: SE in bit/s/Hz that can be guaranteed to 95% of the UEs, at random
locations, with M = 100, K = 10, and f = 2. The results correspond to the 0.05
percentile in Figure 7.2. The largest value for each precoding scheme is in bold face.

the UEs and we note that max-min fairness provides the smallest SEs.
This non-intuitive behavior is explained by the fact that the max-min
fairness allocation makes every UE operate at the SE achieved by the
weakest UE in the entire network. Statistically speaking, everyone gets
a higher performance with max product SINR power allocation.

The three precoding schemes behave as expected, with M-MMSE
giving the highest SEs and MR giving the lowest SEs. However, RZF
actually works slightly better than M-MMSE with max-min fairness
power allocation, as can be seen from both the CDF curves and Table 7.1.
This is due to the equal power allocation assumption made for the
channel estimation in this example. Since the precoding vectors depend
on the UL powers, the result is that M-MMSE overemphasizes on
interference suppression in the DL. This changes if we also optimize the
UL powers, as described in Section 7.1.2 below.

In summary, DL power allocation can greatly affect the SE distribu-
tion among the UEs. The max product SINR utility provides a good
balance between sum SE and fairness. In this simulation, it provides
around 2.5× higher sum SE than max-min fairness with almost negligi-
ble SE losses for the statistically weakest UEs. We will compare these
power allocation schemes again in the case study of Section 7.7. The
results are similar, but one key difference is that the max-min fairness
utility provides some benefits for the weakest UEs.

7.1.2 Uplink Power Control

It is more complicated to optimize the transmit powers in the UL
than in the DL because the UL powers affect not only the UL data
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transmission but also the quality of the channel estimates and indirectly
the combining vectors. This makes the power control in practical systems
(that operate with imperfect CSI) different from the classic power control
algorithms studied in [369, 360, 81], which assume that the channels
are perfectly known. The SE expressions for the UL in Theorem 4.1 on
p. 276 and Theorem 4.4 on p. 302 appear to be too complicated for
finding the optimal transmit powers by convex optimization. However,
in the special case of i.i.d. Rayleigh fading channels, one can obtain
closed-form SE expressions with MR and ZF that can be utilized for
tractable power optimization [178, 359, 80].

We consider the general case with arbitrary spatial correlation ma-
trices and combining schemes and assume that each UE has a maximum
UL transmit power of PUL

max > 0. To pave the way for the use of low-
resolution ADCs at the BSs (see Section 6.4.1 on p. 442), it is important
to limit the power differences between the intra-cell signals that are
received at the BS. Recall that βjjk = 1

Mj
tr(Rj

jk) denotes the average
channel gain from UE k in cell j to any antenna at BS j. In a cellular
network, there are commonly channel gain differences of up to 50 dB
between the UEs in a cell, but when using low-resolution ADCs it is
beneficial to substantially reduce these differences to avoid that weak
signals drown in the quantization distortion from stronger signals.

In LTE systems, this issue is managed by letting UEs at the cell edge
transmit at maximum power and by gradually reducing the power for
UEs that are located closer to the BS [288]. Inspired by this principle,
we define a maximum received power ratio ∆ ≥ 0dB and consider the
heuristic power control policy

pjk =





PUL
max ∆ >

βj
jk

βjj,min

PUL
max∆βjj,min

βj
jk

∆ ≤ βj
jk

βjj,min

(7.11)

for k = 1, . . . ,Kj in cell j, where βjj,min = mini=1,...,Kj β
j
ji is the average

channel gain of the weakest UE in cell j. We refer to (7.11) as power
control, rather than power allocation, since no power can be reallocated
between the UEs in the UL.
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With the power control policy in (7.11), the UE with the smallest
channel gain in the cell will use the full transmit power PUL

max. The UEs
with slightly larger channel gains that satisfy βjjk < βjj,min∆ will also
use maximum power, while UEs with better channel conditions will use
less power so that the received signal power becomes at most ∆ times
larger than the received signal of the weakest UE. This heuristic policy
is applied independently in every cell and does not take the spatial
channel characteristics of the UEs into account, thus there is certainly
room for improvements. The next example shows how the choice of ∆
affects the SE of the UEs.

Remark 7.2 (Unequal pilot and data powers). We have assumed that
the UL transmit power used for pilot and data are equal, since having
large differences in power between consecutive UL samples is generally
not feasible due to hardware constraints, but some modulation schemes
allow for it. By relaxing this constraint, we can assign unequal powers
for UL data and pilot transmission. This gives greater flexibility to
the power control. It can be used to set a fixed pilot power level and
only optimize the data power, which leads to optimization problems
with a similar structure as the DL utility maximization problem in
(7.6). This approach has been adopted in [193, 210], among others,
and the resulting power control solutions build on the heritage from
utility maximization with perfect CSI [81]. Alternatively, the pilot and
data powers can be treated as separate variables and optimized jointly,
as carried out in [135, 247, 80] for some different utility functions. In
particular, under the assumption of i.i.d. Rayleigh fading and MR or ZF
combining, the utility maximization may lead to geometric programs
that can be solved to global optimality. The gain from having an unequal
pilot and data powers are large for UEs with weak channel conditions,
which can then allocate more power for channel estimation and, thus,
enable better receive combining (e.g., a larger array gain and better
interference suppression).
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(a) MR combining with the heuristic power control policy in (7.11).
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(b) RZF combining with the heuristic power control policy in (7.11).
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(c) M-MMSE combining with the heuristic power control policy in (7.11).

Figure 7.3: CDF of the UL SE per UE with M = 100, K = 10, f = 2, and using
the local scattering model with Gaussian angular distribution and ASD σϕ = 10◦.
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Example of UL SE with Heuristic Power Control

We will now exemplify the SE distribution achieved by the heuristic
power control scheme in (7.11) with MR, RZF, and M-MMSE combining.
We continue the running example that was defined in Section 4.1.3 on
p. 288. We consider M = 100, K = 10, f = 2, and the Gaussian local
scattering model with ASD σϕ = 10◦. The maximum UL transmit
power is PUL

max = 20 dBm per UE. Except for pilots, all samples in each
coherence block are used for UL data transmission.

Figure 7.3 shows CDF curves of the UEs’ individual SE, where the
randomness is due to the UE locations and shadow fading realizations.
For each scheme, we consider ∆ ∈ {0, 10, 20} dB.

A first observation is that there are large variations in SE, even for
the case of ∆ = 0dB in which all UEs in a cell adapt their transmit
power to reach the same received signal power. There are several reasons
for this. First, it is the UE with the worst channel condition in a cell
that determines the SE level of all UEs in the cell and its location and
shadow fading realization vary substantially. Second, the interference
from other cells varies as well, depending on their UE distribution and
power control. Third, the spatial channel correlation creates further
variations, since the UEs with the smallest channel gain may have similar
spatial characteristics as an interfering UE and the UE with the best
channel gain may have spatial characteristics that are different from all
interfering UEs. When running the same simulation with uncorrelated
fading, the CDF curves are compressed around their mean values, in
the sense that the lower and upper tails are smaller.

The choice of receive combining scheme impacts the shape of the
CDF curves. With MR, the weakest UEs greatly benefits from using a
small ∆, since the intra-cell interference from UEs with good channel
conditions would be large unless the power control reduces their power.
UEs with good channel conditions prefer a larger ∆, since they can then
obtain a higher SE. With RZF or M-MMSE, the intra-cell interference
is suppressed to such an extent that the UEs with good channels can
transmit their signals to get a larger received signal power, while the
detrimental effect on the weakest UEs is almost negligible. This shows
that, by having a larger received power, the increased quality of the
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channel estimate improves the receive combining to such an extent that
it almost entirely counteracts the increased interference level that it
creates.

7.2 Spatial Resource Allocation

There can be thousands of UEs residing in each cell of a cellular network,
but only a small fraction of them are in general active in a given
coherence block. The intermittent activity is both created by the end
user and by the bursty nature of packet-based data traffic. While the
number of active UEs can change rapidly, the number of pilot sequences
τp is essentially fixed in practice—one BS cannot decide to reduce the
number of pilots if another BS needs all the pilots. The number can
change over the course of the day, to adapt to the substantial long-term
variations in average traffic load that occur in practice [26], but it is
not practical to adapt τp to short-term traffic variations.

In this section, we outline some key considerations in the allocation
of spatial resources, which includes the pilot assignment, the interplay
between spatial multiplexing and time-frequency scheduling, and the
impact of traffic load variations on the sum SE. The number of pilot
sequences and how these are allocated to the UEs will play a key role.

7.2.1 Pilot Assignment

In cellular networks, every UE that intends to connect to a BS must
go through a network entry procedure. This refers to all the functions
that a UE goes through in order to establish a communication link with
the BS for data transmission and reception. In the LTE standard, this
procedure is called random access (RA) and relies on a contention-based
protocol. The development of RA procedures for Massive MIMO systems
is still in its infancy and is therefore not treated in this monograph,
but a few details are given in Remark 7.4 later. Next, we assume that
the RA procedure has been successfully completed, and we will only
deal with the pilot assignment problem. Once a UE is connected to
a cell, it is assigned to one of the pilot sequences that are available
in that cell. The pilot assignment implicitly determines which other
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UEs in the network will cause pilot contamination to the UE. The
assignment thereby impacts the SE that the UE will achieve. Joint
optimization of the pilot assignment across cells is a way to empower
the weakest UEs [192, 363, 378], which are the ones most susceptible to
the reduced estimation quality and the coherent interference caused by
pilot contamination. The pilot assignment is a combinatorial problem in
which BS j should select Kj pilots from the set of τp pilots and assign
them properly to its Kj UEs. The computational complexity grows very
rapidly with the number of UEs and is therefore of limited practical
use.

There are two categories of heuristic solutions in the literature. The
first category contains greedy algorithms [192, 363, 378] that assign
and reassign the pilots to the UEs in an iterative manner to improve a
utility function. For example, if a UE at the cell edge is greatly affected
by pilot contamination, it can switch pilot with a UE in the cell-center,
motivated by the fact that UEs with strong channel conditions are
less affected by pilot contamination. The second category consists of
predetermined pilot reuse patterns [154, 358, 49], where the τp pilots
are divided into f groups with τp/f pilots each. The integer f is called
the pilot reuse factor. Each cell is associated with one of these disjunct
pilot groups, according to a predetermined pattern. This approach
was taken in the running example, for which Figure 4.4b shows three
different pilot reuse patterns in a symmetric network. An example with
f = 3 in an asymmetric cellular network is provided in Figure 7.4,
where each color/pattern represents one pilot group. The classical four-
color theorem proves that f = 4 is sufficient to make sure that every
cell belongs to another cell group than its immediate neighbors [130].
Note that the use of pilot reuse patterns resembles the frequency reuse
patterns in GSM, but in contrast to legacy systems the reuse patterns
are only applied to the pilot transmission while all cells send payload
data in parallel over the full bandwidth (i.e., universal frequency reuse).
The reuse pattern should be designed to automatically give a large
spatial separation between UEs that use the same pilot, to alleviate the
need for further coordination between cells. Note that the two categories
described above can also be used jointly, by having pilot reuse patterns
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Figure 7.4: Illustration of the division of an asymmetric cellular network into f = 3
disjoint pilot groups, where f is called the pilot reuse factor. Each group is indicated
with a distinct color and pattern.

and then apply a greedy algorithm for pilot assignment within each
pilot group.

A pilot assignment that is good for a UE in the UL, in terms of giving
little coherent interference, is not necessarily good for the UE in the
DL. For example, the spatial channel correlation can be very different
depending on who is transmitting, as illustrated in Figure 4.16. Channel
gain differences can also create asymmetry since the UL interference is
sent from UEs in other cells and the DL interference is sent from BSs
in other cells.

To investigate the impact of pilot assignment on the SEs, we revisit
the running example defined in Section 4.1.3 on p. 288. We consider one
snapshot of the network with K = 10 UEs at fixed locations in each cell.
We focus on the UL with M = 100 antennas, 20dBm transmit power
per UE, and the Gaussian local scattering model with ASD σϕ = 10◦.
Except for the pilots, all samples in the coherence blocks are used for
UL data transmission.

In order to show the impact that different types of pilot assignment
can have on the SE, we consider the pilot reuse factors f = 1 and
f = 2, as illustrated in Figure 4.4b. We uniformly randomize the pilot
assignment in every cell and pilot group, and we plot CDF curves of
the resulting SE variations. Figure 7.5a shows the sum SE, averaged
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(b) Impact of pilot assignment on the SE of the weakest UE in a random cell.

Figure 7.5: CDFs of the average UL sum SE among the cells and the weakest UE’s
SE in an arbitrary cell for different random pilot assignments. The running example
is considered for different pilot reuse factors f , M = 100, K = 10, and the Gaussian
local scattering model with ASD σϕ = 10◦.
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over the cells, and Figure 7.5b shows the SE of the UE with the weakest
channel (smallest average channel gain) in an arbitrarily selected cell.
Results are provided for MR, RZF, and M-MMSE combining.

The sum SE in Figure 7.5a is greatly affected by the choice of
combining scheme and slightly affected by the choice of pilot reuse
factor. More importantly, all the CDF curves are almost vertical. The
largest value is only 3%–9% higher than the smallest value, with the
largest gain achieved with M-MMSE. Hence, there is little to gain in sum
SE from optimizing the pilot assignment (e.g., using a greedy algorithm).

If we look instead at the SE in Figure 7.5b of the UE with the weak-
est channel in a randomly selected cell, we observe that it fluctuates
substantially. The curves are not smooth since the pilot assignment
problem is combinatorial. In particular, we notice that there is one in-
terfering UE that provides particularly high pilot contamination, which
results in the discontinuity at 0.1 probability (which is the probability
that two particular UEs use the same pilot when assigning 10 pilots
uniformly at random). The absolute SE variations are small with MR,
since its performance is mainly limited by non-coherent intra-cell inter-
ference, while the weakest UE has much to gain from optimizing the
pilot assignment when using RZF or M-MMSE combining.

In summary, the sum SE can be optimized by selecting an appro-
priate pilot reuse factor. The exact pilot assignment within a cell has
little impact on the sum SE, but can greatly affect how the sum SE
is divided among the UEs. A reasonable goal for the pilot assignment
is to improve the fairness, by making sure that UEs with bad channel
conditions are assigned pilots that give little pilot contamination.

Remark 7.3 (Joint spatial-division and multiplexing). An interesting
transmission scheme that allows pilot reuse within a cell is joint spatial-
division and multiplexing (JSDM) [7, 235]. The key idea behind JSDM
is to capitalize on spatial channel correlation of large antenna arrays.
This allows us to partition a cell into geographical regions which are
characterized by spatial correlation matrices that are almost spatially
orthogonal (see Definition 4.2 on p. 341). Suppose we can partition
the K UEs in a cell into G groups consisting of Kg UEs, g = 1, . . . , G,
respectively, and denote by hgk ∼ NC(0,Rgk) the channel of the kth
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UE in the gth group. The UE grouping is done in such a way that the
correlation matrices of the UEs in each group are very similar, in the
sense that 1

tr(Rgk)Rgk ≈ 1
tr(Rgl)Rgl for all g, k, l, but almost orthogonal

to the correlation matrices of the UEs in other groups: tr(RgkRhl) ≈ 0
for all k, l and g 6= h. As there is little interference between the groups
by design, we can reuse the same pilot sequences for each group without
causing prohibitive amounts of pilot contamination. Due to the intra-cell
pilot reuse, a larger number of UEs can be served per cell for a given
τp. Although JSDM is a theoretically very appealing concept, it is at
the time of writing this monograph unclear if practical channels have
the necessary orthogonality properties.

Remark 7.4 (Random access in Massive MIMO). The RA is a contention-
based procedure by which a UE can connect to a cell in the network,
either as an initial connection to the network or to switch cell. This
procedure is used in LTE and, in its basic form, operates as follows:
Each accessing UE acquires basic synchronization from the BS (e.g.,
determining LTE parameters, frequency synchronization, and frame
timing) and makes use of the so-called random access channel (RACH)1
to transmit a randomly selected pilot-like sequence. Since the accessing
UEs are not coordinated in selecting their sequences, collisions may
occur. After detecting the selected sequences and trying to identify
the UEs that are using a given sequence (collision resolution), the BS
broadcasts a response message, informing the identified UEs that the
RA procedure has been successful while providing physical parameters
(e.g., timing adjustments). The detected UEs send connection requests
to further specify the resources needed for data transmission. On the
other hand, the undetected UEs repeat the RA procedure after a
random waiting time, until successful notification. As exemplified by
this monograph, the benefits of Massive MIMO in terms of SE, EE and
HE are nowadays well understood. On the other hand, the potential
impact that Massive MIMO has on the network access functionalities
has received less attention so far. Recent attempts in this direction
can be found in [76, 41, 286, 305]. In [41], the authors exploit the

1The RACH is typically composed of a specified set of consecutive OFDM
symbols and adjacent subcarriers.
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channel hardening and spatial resolution of Massive MIMO to resolve
collisions distributively. This approach can be used as an add-on to
conventional resolution mechanisms. A coded RA protocol leveraging
the channel hardening properties of Massive MIMO is presented in [305].
The large number of antennas were used in [286] to obtain accurate
estimates of the timing misalignments of the accessing UEs, which were
used to develop an RA procedure that resolves collisions with high
probability.

7.2.2 Scheduling

While conventional BSs manage intra-cell interference by scheduling
the active UEs in different coherence blocks, Massive MIMOs greatly
alleviates this issue since the interference is mitigated spatially, by
receive combining and transmit precoding. There is no fundamental
upper limit on how many UEs can be served per cell in a given coherence
block—it is even practically feasible to serve more UEs than there are BS
antennas2 and to assign a pilot sequence to multiple UEs within a cell
(cf. Remark 7.3). As we increase the number of UEs, for a fixed number
of BS antennas, the sum SE first increases, then reaches a maximum,
and finally starts to decay again. As long as the increased multiplexing
gain (i.e., the number of SEs that are summed up) outweighs the larger
pilot overhead and extra interference (i.e., the reduction of the individual
SEs), the sum SE increases. It was proved in [49] that one should not use
more than half the samples in a coherence block for pilots, as M →∞,
but in practice, the number of pilots can be optimized based on the
anticipated number of UEs.

These behaviors are illustrated in Figure 7.6. The horizontal axis
represents the number of single-antenna UEs or, equivalently, the number
of data streams that are transmitted or received by the BS. The vertical
axis illustrates the sum SE in a scenario that can either represent the
UL or DL. Three operating regimes are identified in the figure. The first
is the multiplexing regime in which the sum SE grows almost linearly
with the number of served UEs, because the increased multiplexing gain

2All receive combining and transmit precoding schemes described in Section 4,
except ZF, can be applied with an arbitrary number of UEs.



7.2. Spatial Resource Allocation 475

Number of UEs (K) or data streams

 S
um

 S
E 

[b
it/

s/
H

z/
ce

ll]

 

Maximum
sum SE

Saturation
regime

Multiplexing
regime

Scheduling
regime

Kopt

Figure 7.6: Illustration of how the number of UEs affect the sum SE, of either
the UL or DL. There is a maximum at some Kopt. In order to maximize the area
throughput, the network should serve all K UEs over the entire bandwidth when
K ≤ Kopt, while scheduling should be used to bring down the effective number of
UEs to Kopt when K > Kopt.

dominates over the extra interference. The growth slows down in the
saturation regime, where we eventually reach a number of UEs that
provides the maximum sum SE. Beyond this point, for every additional
UE, the sum SE decreases. A well-dimensioned network operates in the
saturation regime and occasionally in the multiplexing regime (when
the data traffic is low). The scheduling of UEs is then trivial because
all time-frequency resources are allocated to all active UEs in an effort
to maximize the throughput of the network.

The regime beyond the maximum point is called the scheduling
regime. As the sum SE decreases, it does not pay off to serve all of
them in parallel by spatial multiplexing. Time-frequency scheduling can
then be used to reduce the effective number of UEs per coherence block
to operate close to the maximum sum SE point. Conventional cellular
networks with 1–8 antennas reach the scheduling regime as soon as
there are more than a few active UEs in the cell, while the next example
illustrates that Massive MIMO can handle many tens of UEs before
reaching the scheduling regime.
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Due to the natural traffic variations over the day, from rush hours in
the mornings and evenings to low-traffic hours in the late nights, cellular
networks are often dimensioned for the highest anticipated data traffic
load. Consequently, during parts of the day, there are not sufficiently
many active UEs to reach the maximum sum SE by sending one data
stream per UE. It is then important to recall that we have focused on
the single-stream transmission to single-antenna UEs in this monograph,
while multiantenna UEs have only been briefly discussed in Remark 1.4
on p. 203. The key benefit of having multiple UE antennas is that we can
spatially multiplex several data streams to/from the UE, for example,
by treating each antenna as a separate UE in the signal processing. In a
practical scenario where some UEs are equipped with multiple antennas,
it is the scheduling algorithm that determines how many streams should
be assigned to each UE. Recall that the horizontal axis in Figure 7.6
represents the number of data streams that are simultaneously spatially
multiplexed by the BS, which not necessarily equals the number of UEs.
When there are few active UEs in a cell—fewer than what is needed
to reach the saturation regime by single-stream transmission—we can
increase the sum SE by sending multiple data streams to some of the
UEs. In contrast, when there are sufficiently many UEs to reach the
saturation regime by sending only one data stream per UE, this is the
preferred choice [194, 52]. In principle, we could instead schedule a
subset of the UEs and send multiple streams to each of them. But since
the channels to the different antennas of a UE can be strongly spatially
correlated, the sum SE is typically larger when we schedule a larger
number of UEs and send only one stream to each of them.

We will now exemplify the multiplexing, saturation, and scheduling
regimes by revisiting the running example that was defined in Sec-
tion 4.1.3 on p. 288. We consider M = 100 antennas, 20 dBm transmit
power per UE in both UL and DL, and the Gaussian local scattering
model with ASD σϕ = 10◦. Figure 7.7 shows the DL sum SE as a func-
tion of the number of active UEs, for two different channel coherence
block lengths: τc = 200 and τc = 400. In each case, τp = fK samples
are used for pilots and the remaining samples are used for DL data
transmission. For each number of antennas, each coherence block length,
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and each of MR, RZF, and M-MMSE precoding, we use the pilot reuse
factor f ∈ {1, 2} and bounding technique that maximizes the sum SE.

The simulation results match well with the schematic behavior
described in Figure 7.6. The sum SE grows steeply with K for the first
20 UEs. It then keeps increasing linearly with K when continuing to
increase the number of UEs, but with a smaller slope. Hence, the SE
per UE decays while the sum SE grows. The pilot reuse factor f = 2 is
beneficial when K is small, while f = 1 gives the largest sum SE as K
increases (since it becomes important to reduce the pilot overhead). The
location of the maximum value depends on the length of the channel
coherence block and precoding scheme. With τc = 200, the maximum
sum SE is achieved at around K = 50 for all precoding schemes. All SE
values increase when using τc = 400 instead since the relative size of the
pilot overhead is reduced. The maximum sum SE is now achieved at
K = 60 for RZF, while MR and M-MMSE can handle 80 UEs without
reaching the maximum point.

The numerical comparison between different precoding schemes in
Section 4.3 on p. 316 focused on K = 10. Figure 7.7 shows that the
differences between the precoding schemes grow as more UEs are added.
M-MMSE and RZF can achieve more than twice the SE of MR. RZF
is competitive with M-MMSE for K ≤ 40, but the performance gap is
substantial for larger K.

In summary, Massive MIMO leads to a paradigm shift when it
comes to scheduling, which becomes the last resort to deal with peak
traffic loads, instead of the main method for resource allocation—as
in conventional networks. The maximum sum SE in this example is
achieved when scheduling tens of UEs and having an antenna-UE ratio
of around M/K = 100/50 = 2. The SE per UE is not particularly
large at the sum SE maximizing point. With K = 50, the average
SE per UE is 1.7–2.0 bit/s/Hz with M-MMSE and 0.8–0.9 bit/s/Hz
with MR. This can be achieved in practice using 4-QAM modulation
and different channel codes. The average throughput per UE is still
substantial because there is no time/frequency scheduling, so every
UE enjoys the full bandwidth. Recall that, in the running example, we
consider 20MHz bandwidth, which with M-MMSE leads to an average
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Figure 7.7: Average DL sum SE as a function of the number of UEs, forM = 100 and
different precoding schemes. We consider the local scattering model with Gaussian
angular distribution and ASD σϕ = 10◦. The pilot reuse factor is optimized for each
point on the curves.
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of 34–40Mbit/s for each of the 50 UEs and a total of 1.7–2.0Gbit/s/cell.
The latter number can be compared with the 64Mbit/s/cell that is
achieved by a contemporary LTE system for an equivalent bandwidth
(see Remark 4.1 on p. 291). Hence, the simulated Massive MIMO setup
provides more than an order-of-magnitude higher cell throughput.

7.2.3 Impact of Traffic Load Variations

As mentioned in the beginning of Section 7.2, the number of pilots τp
is typically constant in practice, while the number of UEs that have
data to transmit/receive can change rapidly due to user behavior and
the bursty nature of packet transmission. The number of active UEs in
an arbitrary coherence block can be treated as a random variable and
Poisson distributions are commonly used to model such traffic variations.
For example, Kactive ∼ Po(K) is a random integer with mean K and
standard deviation

√
K. If we use time/frequency scheduling to only

serve τp UEs when Kactive > τp, we can use min(Kactive, τp) as a way to
randomly generate the number of active UEs in an arbitrary coherence
block. This distribution is shown in Figure 7.8 for K ∈ {1, 10, 20, 40}
and τp = 40. The figure shows that the load distribution has a Gaussian-
like shape and the variations grow with K, so in a cell with more UEs,
there will also be larger traffic variations. Note that when K = τp,
it happens frequently that Kactive > τp and then scheduling is often
needed to handle the traffic load variations.

Both the load variations and the concepts of multiplexing/saturation
regimes, illustrated in Figure 7.6, are important when dimensioning
the number of pilots in practice. When the traffic load is high, τp can
be selected based on what is needed to reach the maximum sum SE
point. When the traffic load is low, τp can be selected based on the
distribution in Figure 7.8 to balance between having a low probability
of pilot shortage with Kactive > τp and keeping the pilot overhead
low.

As long as there are sufficiently many pilots, each UE should connect
to the BS that provides the best channel conditions [82], which can be
measured as having the largest trace of the spatial correlation matrix.
However, when there is a pilot shortage in a cell, which calls for time-
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Figure 7.8: Distribution of the number of active UEs in a cell, modeled as
min(Kactive, τp) where Kactive ∼ Po(K) and τp = 40. Note that the probability
of Kactive > τp is substantial for K = 40, which leads to the large probability of
having 40 active UEs in that case.

frequency scheduling, it can happen that a few UEs get higher SE by
connecting to neighboring cells, which currently have lower traffic load
[35]. This type of load balancing is important in conventional networks,
which mainly rely on time-frequency scheduling, but is less critical in
Massive MIMO. For example, if Kactive > τp, then each UE can be
scheduled in a fraction τp/Kactive of all coherence blocks. If there are
10 more UEs than pilots, the fraction becomes 0.09 in a network with
τp = 1 and 0.67 in a Massive MIMO network with τp = 20.

We will now illustrate how the sum SE of a cell is affected by
having a varying number of UEs per cell. To this end, we continue
the running example that was defined in Section 4.1.3 on p. 288. We
consider M = 100 antennas, 20 dBm transmit power per UE in both UL
and DL, and spatially correlated channels based on the Gaussian local
scattering model with ASD σϕ = 10◦. We denote the average number
of UEs per cell as K and consider two scenarios. In the first scenario,
the number of UEs is exactly K in every coherence block. In the second
scenario, the number of UEs is independently randomized in each cell as
min(Kactive, τp) where Kactive ∼ Po(K). The number of pilot sequences
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Figure 7.9: Average DL sum SE as a function of the average number of UEs for
M = 100, τp = 40, and different precoding schemes. In each coherence block, the
number of UEs in a cell is either exactly equal to K or computed as min(Kactive, τp),
where Kactive ∼ Po(K). We consider the local scattering model with Gaussian
angular distribution and ASD σϕ = 10◦.

is τp = 40 and each BS independently selects a random subset of pilots
so that its own UEs use orthogonal pilots, but the pilot contamination
across cells is random.

The average DL sum SE is shown in Figure 7.9 for different K,
using M-MMSE, RZF, or MR precoding. These schemes behave as
expected from previous examples. The key observation is that the
two scenarios give basically the same sum SE in all cases. This is
explained by the fact that the sum SE grows almost linearly with the
number of UEs, thus constantly serving 10 UEs gives roughly the same
average sum SE as switching between serving 8 and 12 UEs with equal
probability. The largest deviation between the curves occurs when K is
close to τp, in which case the sum SE is slightly smaller when having
a random number of UEs. This loss is due to the scheduling because
E{min(Kactive, τp)} < K in these cases, although E{Kactive} = K.

In summary, the number of active UEs varies between coherence
blocks in practice, due to the bursty traffic demand. Substantial changes
can occur over a few tens of coherence times, but we need to select a
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Figure 7.10: Taxonomy of wireless channel models.

fixed pilot length to accommodate different loads in the cells at different
times. When quantifying the sum SE for network planning, it is not
necessary to randomize the number of UEs per cell, since the results are
almost the same as when we have a fixed number of UEs that equals
the average number of UEs.

7.3 Channel Modeling

Realistic performance assessment of Massive MIMO systems requires
the use of a channel model that reflects the main characteristics of
large antenna arrays. Such a model must account at least for the array
geometry, the correlation between the channel responses of different
antennas, and the physical location and orientation of BSs and UEs.
Our goal here is not to provide an introduction to channel modeling for
MIMO systems, but rather to convey some insights from simple and
analytically tractable models, which are commonly used in the research
literature. For further details, the interested reader is referred to classical
textbooks and tutorial papers on channel modeling for MIMO systems,
such as [255, 225, 12, 88].

The taxonomy of channel models for wireless communications is pro-
vided in Figure 7.10. In a nutshell, channel models are either determin-
istic or stochastic. Deterministic models depend on a given environment
with fixed locations of transmitters, receivers, scatterers, reflectors, etc.
Examples of such models are ray tracing based on 3D-building models
and recorded channel measurements. Also, the previously introduced
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LoS model for a horizontal ULA in (1.23) is an example of a very simple
deterministic channel model. We will provide an extension of this model
to three dimensions and arbitrary array geometries in Section 7.3.1. A
drawback of deterministic models is that they are only valid for a specific
scenario and, consequently, do not allow for far-reaching conclusions.
Moreover, the results cannot be easily reproduced by others as there
are very few openly accessible databases of channel measurements and
3D-building models. However, deterministic models can provide very
accurate performance predictions for their specific scenarios.

Stochastic channel models are independent of a particular environ-
ment and can be used to generate an essentially unlimited amount
of channel realizations with the desired statistical properties. These
models can be roughly separated into correlation-based, parametric, and
geometry-based channel models. The correlated Rayleigh fading channel
model, as introduced in (2.1), is an example of a correlation-based
model. The channel responses are all Gaussian distributed with zero
mean and entirely defined through the correlation matrices. However, it
is a frequency flat-fading channel model since all multipath components
are assumed to arrive with the same delay (or to be irresolvable with
the sampling frequency of the system). For most of the analysis in
this monograph, this is sufficient as we focus only on communication
over a coherence block in which the channel is assumed to be constant
(see Definition 2.2 on p. 219). In contrast, parametric channel mod-
els define stochastic distributions of the number of multipath clusters
and the delay, power, angle of arrival (AoA), and angle of departure
(AoD) of the individual multipath components. Examples include the
Saleh-Valenzuela model [283] and extensions thereof [338, 85]. Since
parametric models are independent of the geometry of the propagation
environment, they can generally not be used for system-level simulations
with time-evolution of the channel, caused by movements of the trans-
mitters or receivers. Lastly, stochastic geometry-based models define a
distribution of the physical location of scatterers around the transmitters
and receivers. Once the locations of all scatterers are chosen, individual
propagation paths are modeled in a quasi-deterministic manner. Such
models are frequently adopted by standardization bodies such as the
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3GPP or the Institute of Electrical and Electronics Engineers (IEEE)
since they are easy to simulate, agree very well with measurements, and
enable time-evolution. Geometry-based models can be seen as a balance
between the two extremes of purely stochastic and purely deterministic
channel modeling. We will discuss the 3GPP 3D MIMO channel model
[1] as an example in Section 7.3.3.

In (1.23), we introduced a deterministic LoS channel model for a
horizontal ULA in a two-dimensional setting. The only parameters of
this model are the azimuth angle of the incoming wave and the channel
gain. It is important to remember that this model is based on a plane-
wave assumption, that is only valid if the UE is located within the
far-field of the antenna arrays.3 We will now extend this channel model
to three dimensions and arbitrary antenna array geometries.

Antenna arrays come in arbitrary shapes and sizes depending on
the use case, carrier frequency, and the area to be covered. The most
widely used arrays in cellular communications are either linear or planar,
but also cylindrical arrays find applications in ground-based military
communications. Figure 7.11 shows some common antenna array archi-
tectures, namely the horizontal and vertical ULA as well as the planar
rectangular and cylindrical array. While a horizontal (vertical) ULA
is only capable of separating UEs in the azimuth (elevation) domain,
a planar or cylindrical array is capable of separating UEs in both az-
imuth and elevation domains. This aspect becomes very important in
metropolitan areas with high-rising buildings, where UEs are located
on different floors. For this reason, it is important that a channel model
for Massive MIMO systems captures the 3D nature of the propagation
environment. We will discuss the impact of the array geometry in detail
in Section 7.4.
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a)

b)

c)

d)

Figure 7.11: Examples of different antenna array geometries: a) linear vertical; b)
linear horizontal; c) planar; d) cylindrical. Each circle represents one antenna.

7.3.1 3D LoS Model with Arbitrary Array Geometry

To proceed, we need to define the wave vector k(ϕ, θ) ∈ R3 of a plane
wave with wavelength λ that impinges on the antenna array under the
azimuth angle ϕ ∈ [−π, π) and the elevation angle θ ∈ [−π/2, π/2):

k(ϕ, θ) = 2π
λ




cos(θ) cos(ϕ)
cos(θ) sin(ϕ)

sin(θ)


 . (7.12)

The wave vector k(ϕ, θ) describes the phase variation of a plane wave
with respect to the three Cartesian coordinates (see Figure 7.12). Thus,
the wave observed at location u ∈ R3 experiences a phase shift of
k(ϕ, θ)Tu with respect to the origin. Consequently, the LoS channel
response h ∈ CM of an antenna array with M antennas, respectively
placed at the locations um ∈ R3, m = 1, . . . ,M , is given by

h =
√
β
[
ejk(ϕ,θ)Tu1 , . . . , ejk(ϕ,θ)TuM

]T

︸ ︷︷ ︸
,a(ϕ,θ)

(7.13)

where β describes the macroscopic large-scale fading and is assumed
to be the same for all antennas (i.e., the array aperture is small as

3In the far-field of an antenna in free space, the power intensity of the EM
radiation is inversely proportional to the squared distance. The far-field region
generally begins at a few wavelengths away from an antenna, while the far-field
region of an array begins at a distance that grows with the square of the array
aperture.
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Figure 7.12: Planar rectangular antenna array with an impinging plane wave from
elevation angle θ and azimuth angle ϕ. The M = MVMH antennas are horizontally
and vertically equally spaced with spacing dH and dV, respectively. The mth antenna
has the horizontal index i(m) and the vertical index j(m).

compared to the propagation distance). The vector a(ϕ, θ) ∈ CM is the
so called array response or steering vector. For a horizontal ULA along
the y-axis with antenna spacing dH (in multiples of the wavelength) and
waves arriving only from directions within the x-y plane (i.e., θ = 0 and
um = [0, λ(m − 1)dH, 0]T), it is easy to see that (7.13) coincides with
(1.23).

Figure 7.12 shows a planar array in the y-z-plane consisting of MV
horizontal rows with MH antennas each. The antennas are uniformly
spaced with horizontal and vertical spacing dH and dV (measured in
multiples of the wavelength), respectively. The antennas are consec-
utively indexed row-by-row by m ∈ [1,M ], M = MVMH, so that the
location of the mth antenna can be described as

um =




0
i(m)dHλ
j(m)dVλ


 (7.14)
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Figure 7.13: Normalized array response | 1
M

a(0, 0)Ta(ϕ, θ)| as a function of the
azimuth angle ϕ. The array geometry is given byMV = 4,MH = 8 and dV = dH = 0.5.

where

i(m) = mod(m− 1,MH) (7.15)
j(m) = b(m− 1)/MHc (7.16)

are the horizontal and vertical index of antenna m, respectively. Fig-
ure 7.13 shows the normalized array response | 1

M a(0, 0)Ta(ϕ, θ)| of the
planar array defined in (7.14) withMV = 4,MH = 8, and dV = dH = 0.5
as function of ϕ for different elevation angles θ. The figure shows how
much an interfering signal arriving from azimuth angle ϕ is attenuated
when receiving a signal from ϕ = θ = 0. The resolution of the array
is better when the main lobe is narrower because a smaller angular
difference between the desired and interfering signals is sufficient to
get a certain attenuation of the interfering signal. We observe that
the horizontal resolution of the array is significantly reduced for lower
elevation angles (e.g., θ = −π/3).

7.3.2 3D Local Scattering Model with Arbitrary Array Geometry

The local scattering model was introduced in Section 2.2 on p. 235 for
a horizontal ULA in a two-dimensional scenario. It provides an easy



488 Practical Deployment Considerations

way to compute the correlation matrix R ∈ CM×M of a channel vector
h ∼ NC(0M ,R) as a function of the distribution of the AoA of the
incoming waves. With the definition of the array response in (7.13), we
can now extend the local scattering model in (2.23) to three dimensions
and arbitrary array geometries. If we redefine (2.20) as an = gna(ϕn, θn)
and follow the same subsequent steps as in Section 2.2, we obtain a new
expression for the elements of R:

[R]m,l = β

∫∫
ejk(ϕ,θ)T(um−ul)f(ϕ, θ)dϕdθ (7.17)

where f(ϕ, θ) is the joint PDF of the azimuth and elevation angle and
the integration is over all angles. For the case of the planar array as
shown in Figure 7.12, this expression simplifies to

[R]m,l

= β

∫∫
ej2πdV[j(m)−j(l)] sin(θ)
︸ ︷︷ ︸

Vertical correlation

ej2πdH[i(m)−i(l)] cos(θ) sin(ϕ)
︸ ︷︷ ︸

Horizontal correlation

f(ϕ, θ)dϕdθ.

(7.18)

The terms dV[j(m) − j(l)] and dH[i(m) − i(l)] represent the vertical
and horizontal distance between antennas m and l, respectively. Thus,
the two complex exponential terms in (7.18) can be interpreted as the
vertical and horizontal correlation of the array. Consider the set of
antenna pairs (m, l) such that either i(l) = i(m) or j(l) = j(m); that
is, the columns and rows of the antenna array. For these pairs, the
correlation matrix has the following values:

[R]m,l =




β
∫
ej2πdV[j(m)−j(l)] sin(θ)f(θ)dθ i(l) = i(m)

β
∫∫
ej2πdH[i(m)−i(l)] cos(θ) sin(ϕ)f(ϕ, θ)dϕdθ j(l) = j(m).

(7.19)
Interestingly, while the correlation of the vertical columns coincides with
the ULA in (2.23), this is not the case for the correlation of the horizontal
rows. The larger the absolute value of the elevation angle θ, the smaller
is the effective horizontal antenna spacing dH(i(m)− i(l)) cos(θ) of the
array. Thus, the correlation between the antennas of the horizontal
rows depends on the elevation angle. The same effect has already been
observed in Figure 7.13 for a pure LoS scenario.
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(a) A UE is located at horizontal
distance d and azimuth angle ϕ from
an antenna array in the origin. A ring
of local scatterers of radius r around
the UE creates a horizontal angular
spread of ∆ϕ.
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(b) The same ring of local scatterers in
the horizontal plane creates also a vertical
angular spread of the incoming waves of
∆θ = (θmax− θmin)/2. The mean elevation
angle is θ = (θmax + θmin)/2.

Figure 7.14: Derivation of the angular spread of the 3D one-ring model.

The local scattering model for the planar array is entirely defined
by the joint PDF of θ and ϕ. We will now provide a way to define this
distribution for a somewhat realistic system, which takes into account
the height at which the antenna array is installed and the distance
between the UE and array [7]. As shown in Figure 7.14, we consider
a UE being located at azimuth angle ϕ, horizontal distance d, and
height z = −h below a planar antenna array. We assume that the
UE is surrounded by a horizontal ring of local scatterers of radius r.4
As shown in Figure 7.14a, the radius r defines the horizontal angular
spread ∆ϕ = tan−1(r/d) . The same scatterers give also rise to a vertical
angular spread which can be computed as follows. As can be seen from
Figure 7.14b, the maximum elevation angle θmax = tan−1(h/(d − r))
is achieved by a scatterer at distance d − r. Similarly, the minimum
elevation angle θmin = tan−1(h/(d + r)) is achieved by a scatterer
at distance d + r. Assuming that the elevation angles are uniformly
distributed in the interval [θmin, θmax], the mean elevation angle is
computed as θ = (θmax + θmin)/2 and the vertical spread is ∆θ =

4The scatterer ring is only a means to define reasonable values of the angular
spread, but has no other physical meaning.
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(θmax− θmin)/2.5 Thus, the spatial correlation matrix is finally given as

[R]m,l = β

4∆ϕ∆θ

∫ θ+∆θ

θ−∆θ

∫ ϕ+∆ϕ

ϕ−∆ϕ
ejk(ϕ,θ)T(um−ul)dϕdθ. (7.20)

Note that the angular spread with this model is rather small. For
example, for a BS at a height of h = 25m, a UE located at a distance of
d = 200m with a scattering radius of r = 50m sees a horizontal spread
of ∆ϕ = 14◦ and a vertical spread of less than ∆θ = 2◦. To avoid angular
distributions with small finite support, we can alternatively use the
Gaussian [4, 373, 313, 363] or Laplacian distribution [225, Section 7.4.2],
[161] rather than the uniform distribution in (7.20) (cf. Section 2.6 on
p. 235). Recall that Gaussian distributions were used in the running
example of previous sections. The mean angles and angular spreads
derived above can be used as values for the ASD and mean of these
distributions. In the remainder of this monograph, we will sometimes
refer to the model in (7.20) as the 3D one-ring model or simply the
one-ring model.

Dominant Eigenspace and Chordal Distance

As anticipated in Section 2.6 on p. 235 for the local scattering model,
correlation matrices generally have a mix of many weak and a few
strong eigendirections. To further exemplify this, Figure 7.15 shows
the eigenvalues in decreasing order when using the 3D one-ring model
in (7.20) with an 8 × 8 antenna array and different scatter radii. We
can clearly see that the smaller the scatter radius, the more energy
is packed into a few strong eigendirections of the channel; 99% of the
energy is contained in 5 out of the 64 eigenvalues when r = 50m and 20
eigenvalues when r = 200m. Strictly speaking, the correlation matrix
might still have full rank, but we can define the following notion of
p-dominant eigenspace to capture the eigenspace that contains most of
the energy.

Definition 7.1 (p-Dominant eigenspace). Let X ∈ CM×M be a Hermi-
tian matrix with eigenvalue decomposition X = UDUH, where U =

5This is a crude approximation. A ring of uniformly distributed scatterers would
not lead to uniformly distributed azimuth and elevation angles.
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Figure 7.15: Eigenvalues of the spatial correlation matrix R when using the 3D
one-ring model in (7.20) for an 8× 8 antenna array and different scatter-radii r. The
other model parameters are d = 200m, ϕ = 23.5◦ and h = 23.5m.

[u1 . . .uM ] ∈ CM×M is unitary and D = diag(λ1, . . . , λM ) ∈ RM×M

consists of the non-negative eigenvalues of X in non-increasing order (i.e.,
λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0). The p-dominant eigenspace eigp(X) ∈ CM×p

is defined as eigp(X) = [u1 . . .up].

The p-dominant eigenspace of a Hermitian matrix is the (tall) uni-
tary matrix composed of the p eigenvectors belonging to its p largest
eigenvalues. In order to define a metric for measuring orthogonality
between two eigenspaces, we consider the chordal distance (see, e.g.,
[180, 235]) which is defined for arbitrary matrices as follows.6

Definition 7.2 (Chordal distance). The chordal distance dC(X,Y) be-
tween two matrices X and Y is defined as

dC(X,Y) = ‖XXH −YYH‖2F . (7.21)

For two (tall) unitary matrices U1,U2 ∈ CM×p, the chordal distance

6Other distance or orthogonality metrics between correlation matrices can be
also defined. We refer the interested reader to [88, Sec. 3.1.1].
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takes the form
dC(U1,U2) = ‖U1UH

1 −U2UH
2‖2F

= tr ((U1UH
1 −U2UH

2) (U1UH
1 −U2UH

2)H)
= tr (U1UH

1 + U2UH
2 − 2U1UH

1U2UH
2)

= 2p− 2
p∑

i=1

p∑

j=1
|uH

1iu2j |2 (7.22)

where uki denotes the ith column vector of matrix Uk for k = 1, 2. The
chordal distance can be interpreted as the number of dimensions of the
subspace that can be reached by a linear combination of the column
vectors of only one of the two matrices. For example, if U1 = U2,
we have dC(U1,U2) = 0. Although each matrix individually spans p
dimensions, all of them can be reached through a linear combination of
the column vectors of U1 or U2. On the other hand, for UH

1U2 = 0p×p,
we have dC(U1,U2) = 2p because each matrix spans a p-dimensional
space which cannot be reached through a linear combination of the
column vectors of the other matrix.

Figure 7.16 shows the chordal distance for different values of M
between the 6-dominant eigenspaces of the correlation matrices of a
UE at azimuth 0◦ and distance 200m and that of a UE at the same
distance but at azimuth angle ϕ. The 3D one-ring model in (7.20) is
used with scatter radius r = 50m. We can see that the chordal distance
increases with M , due to the increased spatial resolution of the array,
and with ϕ since the spatial correlation matrices become increasingly
different.

7.3.3 The 3GPP 3D MIMO Channel Model

The previously presented LoS and local scattering channel models are
mathematically convenient and very easy to simulate while still cap-
turing essential characteristics of the wireless channel between BSs
equipped with large antenna arrays and single-antenna UEs. In particu-
lar, we have seen the dependence of the channel (correlation) matrix
on the antenna array geometry as well as on the physical location and
orientation of the BS and UEs. Both channel models are spatially con-
sistent; that is, the channel statistics for a given location are always the
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Figure 7.16: Chordal distance between the 6-dominating eigenspaces of the corre-
lation matrices of a UE at azimuth 0◦ and distance d = 200m and of a UE at the
same distance but at azimuth angle ϕ. The antenna array is assumed to be quadratic
with dH = dV = 0.5 and installed at height h = 23.5m. The correlation matrices are
generated by the 3D one-ring model in (7.20) with scatter radius r = 50m.

same and do not depend on the simulation run. However, these models
suffer from several shortcomings, which render them inappropriate for
large-scale system-level simulations with the goal of quantifying the
real-world performance of MIMO systems. In particular, it is neither
realistic to assume pure LoS conditions nor to consider a single local
cluster of scatterers around the UE. For this reason, the 3GPP has de-
fined a 3D stochastic geometry-based channel model for MIMO systems
[1], which explicitly accounts for multiple spatial clusters of scatterers
and a mix of NLoS and LoS propagation paths. This so-called 3GPP
3D MIMO channel model is an extension of previously standardized
channel models, such as Winner II [347], which assumes that all scat-
terers, reflectors, UEs and BSs are located in a two-dimensional plane.
This extension was required as it was impossible with such models to
simulate MIMO systems exploiting the elevation dimension.

The 3GPP 3D MIMO channel model is characterized by a determin-
istic system layout (i.e., BS and UE locations, antenna orientations, field
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Figure 7.17: The 3GPP 3D MIMO channel model [1] is a stochastic geometry-
based model. For each BS-UE link, C scattering clusters with random angles of
arrival/departure are generated. Each cluster is associated with a time delay τl and
a power pl, for l = 1, . . . , C. The distributions of angles, delays, and powers depend
on the chosen scenario. Each cluster generates 20 multipath components, which are
assumed to be resolvable in the angular domain, but not in the time domain.

patterns7, and carrier frequency) and a set of random parameters (i.e.,
delay spread, delay values, angular spread, shadow fading, and cluster
powers) which are generated from statistical distributions obtained
from extensive channel measurements. The model is valid for carrier
frequencies in the range 2–6GHz and bandwidths of up to 100MHz.

The modeling approach is as follows. For each pair of UE and BS, C
scattering clusters with random AoAs, AoDs, delays, and power levels
are generated. With a scenario-dependent8 probability, also a LoS path
is present. This is schematically shown in Figure 7.17. The value of C
depends on the scenario and is in the range of 12–20. Each cluster is
assumed to have 20 resolvable multipath components in the angular

7The field or radiation pattern of an antenna describes the angular dependence
of the strength of the transmitted or received radio waves.

8The 3GPP 3D MIMO channel model can be used to simulate different prop-
agation scenarios (e.g., coverage tier, hotspot tier, LoS, NLoS, indoor, outdoor,
outdoor-to-indoor, urban, and suburban), which are detailed in [1].
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domain with random angular offsets from the cluster AoA/AoD. The
angular spread of the multipath components of each cluster is rather
low, within 1◦–6◦, while the angular spread of the clusters themselves
is large, within 20◦–90◦. The multipath components of each cluster are
assumed to be unresolvable in the time domain (i.e., they all arrive with
the same cluster delay). The 3GPP 3D MIMO channel model considers
a multitude of different scenarios with different BS and UE heights
and arbitrary antenna characteristics. In particular, high-rise buildings
with UEs on multiple floors can be simulated to gauge the gains of
elevation precoding. Dual-polarized antennas (see Section 7.4.4), as well
as time-evolution of the channel due to movement of UEs, can be also
considered. An important aspect of this channel model is that it is
not spatially consistent; that is, the location of scattering clusters are
random and uncorrelated between different UEs. In other words, two
UEs at almost the same location do not share any scatterers. Thus,
it cannot be used for simulations requiring spatial consistency. In this
case, one must resort to ray tracing, recorded channel measurements,
or simpler channel models as presented earlier. There are also scatterer-
centric channel models, such as COST2100 (e.g., [88, Sec. 4.4.5]), where
a global set of scatterers is shared by all UEs. Although this type
of channel model is spatially consistent, there is currently no widely
accepted model to be used with large antenna arrays (see [123, 160]).
Two open-source implementations of the 3GPP 3D MIMO model are
currently available: the standalone QuaDRiGa channel model [159]
developed by the Fraunhofer Heinrich Hertz Institute and the LTE
Advanced system simulator from the Vienna University of Technology
[5]. The QuaDRiGa model will be used for the case study in Section 7.7.

7.3.4 Observations from Channel Measurements

Several channel measurement campaigns with large antenna arrays
have been conducted during the last years. Among the first were [120,
150] that provided the first verifications of favorable propagation (see
Definition 2.5 on p. 233) in practice.9 In [120], a cylindrical array of

9The authors of [300] built the first 64-antenna Massive MIMO prototype and
confirmed the expected tremendous performance. However, their publication does
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128 antennas was used for indoor-to-outdoor measurements, while the
authors of [150] conducted outdoor measurements with a virtual planar
array of 112 antennas. Both papers quantify the level of favorable
propagation (see Section 2.5.2 on p. 233) by computing the correlation
metric

δcorr = E
{
|hH

1h2|2
‖h1‖2‖h2‖2

}
(7.23)

between the channels of two randomly chosen measurement locations.
This metric is similar to (2.19) and essentially describes the variance of
the inner products of the normalized channels. The two papers conclude
that close to ideal results (i.e., i.i.d. Rayleigh fading channels for which
the average correlation can be shown to be δcorr = 1/M) can be achieved
in practice. However, the larger the number of antennas, the higher was
the observed gap to the ideal case, giving rise to the conclusion that
some saturation effect appears and that the marginal gain of additional
antennas rapidly diminishes. Similar measurements were conducted in
[124] and different antenna architectures (horizontal, planar, vertical)
were compared. Figure 7.18 shows the average correlation over randomly
picked UE locations within a cell sector. The measurement results are
reproduced from [124]10 and simulation results are based on the 3GPP
3D MIMO channel model as implemented in the QuaDRiGa software
[159]. We can clearly see that a horizontal array provides a decorrelation
similar to i.i.d. channels, which implies that the UEs’ channels will be
nearly orthogonal. In contrast, the planar and vertical arrays exhibit
higher δcorr due to the lower vertical angular spread between UEs; that
is, it is easier to separate UEs in the azimuth domain than in the
elevation domain. If we would instead consider a scenario with UEs
located at different floors of high-rise buildings, the results would be
more favorable towards planar (and vertical) arrays as the elevation
angular spreads are then higher. The differences between the results
for simulated and measured channels can be partially attributed to
a reduced number of measurement locations and the lack of spatial
consistency of the 3GPP 3D MIMO channel model.
not report specifically on channel measurements.

10We would like to thank Marc Gauger for recomputing some of the results.
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Figure 7.18: Average UE correlation δcorr in (7.23) between the channel vectors
of two UEs at randomly chosen locations within a cell sector as a function of the
number of antennas. Horizontal, vertical and quadratic planar antenna geometries
are considered. The measurement results are reproduced from [124]. The simulation
results are obtained for the urban macro LoS scenario of the 3GPP 3D MIMO
channel model.

Several papers investigate the resolvability of closely spaced UEs
under LoS conditions. Even though we will see in the next section, from
simple analytical models, that low angular separation is detrimental
for Massive MIMO, the results of [207, 115] indicate that arrays with a
very large aperture can resolve UEs even in close proximity. This has
been confirmed for indoor [207] as well as outdoor [115] channels.

The subsequent works [121, 122] reported on refined outdoor channel
measurements using a 7.4m long virtual ULA as well as a more compact
cylindrical array with 128 antennas. These works demonstrate that
SEs similar to those predicted by closed-form expressions obtained for
i.i.d. Rayleigh fading channels can be achieved on measured channels,
although the channels have very different characteristics. Moreover, the
authors make the interesting observation that substantial variations of
the received power over the array exist. In other words, antenna arrays
with a large aperture can experience antenna-dependent shadow fading.
We have shown in Section 4.4.1 on p. 338 that this phenomenon leads



498 Practical Deployment Considerations

to linearly independent correlation matrices, which is a key property in
the asymptotic performance analysis. The antenna-dependent shadow
fading was observed for the ULA as well as for the compact cylindrical
array. However, the explanation for this phenomenon is different in these
cases. Different parts of a ULA “see” different parts of the propagation
environment such that obstacles might only block certain parts of the
array. A similar effect arises in distributed antenna systems, where most
antennas have independent propagation paths to a UE. On the other
hand, the antennas of a cylindrical array point in different directions,
where different scattering clusters or obstacles are relevant. The authors
of [122] also observed that shadowing over the array can give rise to
the effect that some antennas contribute more to the overall channel
than others. Thus, some antennas might be dynamically turned on/off
to save energy and/or processing power. This phenomenon is further
discussed in the following example.

Large-Scale Fading Variations over the Antenna Array

Consider the scenario in Figure 7.19 where two obstacles block two
different parts of the antenna array in two different cell regions A and B.
In region A, the first M ′ antennas of the array exhibit strong shadowing
with attenuation β ∈ [0, 1], while the remaining M −M ′ antennas have
an unobstructed path to the UEs with attenuation (M−βM ′)/(M−M ′).
This value is chosen such that the average per-antenna energy of the
channel is independent of β and equal to one. In region B, the situation
is the opposite, which means that the last M ′ antennas are obstructed.
We neglect other types of spatial channel correlation in this example
to focus exclusively on the effects of antenna-dependent shadowing.
The channel vectors of UEs in region A and B are distributed as
hA ∼ NC(0M ,RA) and hB ∼ NC(0M ,RB), respectively, where11

RA =
[
βIM ′ 0

0 M−βM ′
M−M ′ IM−M ′

]
(7.24)

RB =
[
M−βM ′
M−M ′ IM−M ′ 0

0 βIM ′

]
. (7.25)

11For brevity, we did not write out the dimensions of the all-zero matrices.
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Figure 7.19: Obstacles which only partially block propagation paths towards a UE
can lead to large-scale fading variations over the antenna array.

The effect of shadowing in this example is as follows. Two UEs located
in the same region see a channel with an effectively reduced number of
antennas. For instance, with β = 0, only M −M ′ antennas are visible.
Figure 7.20 illustrates the effect with M = 64, M ′ = 30, and different
values of β. As can be seen from Figure 7.20, shadowing increases the
average correlation δcorr as defined in (7.23) between the UEs’ channels
in the same region case. On the other hand, for two UEs in different
regions, shadowing decreases the correlation since two parts of the
antenna array receive more energy from one UE than from the other.
Thus, antenna-dependent shadowing can have a positive or negative
effect depending on which UEs are simultaneously scheduled in a cell.

One can also consider shadowing over the antenna array as a partic-
ular form of spatial channel correlation which could be exploited in a
manner similar to the previously discussed JSDM in Remark 7.3 on p.
472. In this case, the dominating eigenspace of a group would be simply
the subset of antennas of the array over which most energy is received.
In the example in Figure 7.19, the UEs in region A and B would be
respectively served by the lower and upper part of the antenna array
so that the present obstacles would naturally reduce the interference
between the groups.
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Figure 7.20: Average UE correlation δcorr in (7.23) of the channels of two UEs
in either the same (A−A) or different (A−B) regions of Figure 7.19. Depending
on the scenario, antenna-dependent shadowing can either increase or decrease the
correlation.

7.4 Array Deployment

Until now, we have characterized antenna arrays only indirectly through
their spatial channel correlation. We will now shift focus to the arrange-
ment of the individual antennas; that is, the array geometry. In this
section, we will explore the effects of different antenna array geometries
and have an in-depth look at the effects of antenna spacing and polar-
ization. For an introduction to the design of BS antennas and antenna
arrays for cellular communications, we refer to [79].

The most important factors of an antenna array are the antenna
spacing and its total size (relative to the wavelength), which is known
as the aperture. The size determines the array’s directivity; that is, its
ability to focus the radiated energy towards certain directions, while
the number of antennas determines the radiated/received energy. Some
of these aspects will be discussed in more detail in Section 7.4.2. Each
individual antenna consists of one or more radiating elements12 that have

12A radiating element can of course also receive energy.
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Antenna

Radiating elements

RF input/output

Figure 7.21: Antenna array consisting of four antennas each of which is composed
of four radiating elements. The radiating elements of an antenna share the same RF
input and output.

a fixed size that depends on the wavelength λ of the carrier frequency.
For example, a half-wave dipole, is in essence, a piece of wire of length
λ/2. For a carrier frequency of 2.6GHz, such a dipole has a length of
5.8 cm. Since the size of a dipole cannot simply be made larger, multiple
dipoles or other radiating elements need to be connected together if
the captured energy of an antenna shall be increased. The following
definition, which is also visualized in Figure 7.21, makes the relation
between the terms radiating element, antenna, and antenna array clear.

Definition 7.3 (Radiating element, antenna, antenna array). An antenna
consists of one or more radiating elements (e.g., dipoles) which are
fed by the same RF signal. An antenna array is composed of multiple
antennas with individual RF chains.

In legacy mobile communication systems (e.g., GSM, UMTS), a BS
with a single antenna and single RF chain needs to provide coverage for
an entire cell sector with a horizontal width of 120◦ and a radius of up
to several kilometers. At the same time, it must not radiate energy to
neighboring cell sectors. Such BS antennas have typically an azimuth
beamwidth of 65◦ and an elevation beamwidth of 3◦–15◦ [79, Sec. 2.2].13
The resulting coverage gap between the 65◦ sectors is generally filled by

13The beamwidth is defined as the angular distance between the half-power points
of the main lobe of the antenna’s radiation pattern. It is also referred to as the
half-power beamwidth or 3-dB beamwidth. The beamwidth is generally different in
the azimuth and elevation directions.
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Figure 7.22: Height of a planar antenna array as a function of the carrier frequency
for MV = 16 antennas per vertical column and different vertical antenna spacings
dV = [ 1

2 , 1, 2].

neighboring BSs. As we will see later, to achieve such a focused radiation
of energy in the elevation domain, the antenna must be composed of
multiple vertically stacked radiating elements. Common antenna heights
are 8–16 wavelengths [79, Sec. 2.2.1.3]. With a typical element spacing
of 0.8λ, a single BS antenna consists of 10–20 radiating elements. This
number is doubled since dual-polarized co-located antennas are the
norm for cellular communications (see Section 7.4.4). Thus, a legacy BS
covering three cell sectors is already equipped with 60–120 radiating
elements but has only three RF chains, one per sector. In contrast,
a Massive MIMO system has a similar number of radiating elements
but an individual RF chain for each of them. The practical challenge
of Massive MIMO is therefore not to accommodate a large number of
radiating elements but to process their individual RF signals.

7.4.1 Preliminaries on Physical Array Size

Consider the planar antenna array shown in Figure 7.12. The horizontal
width and vertical height of this array are respectively given by MHdHλ

and MVdVλ, where dH and dV are the horizontal and vertical antenna
spacing (in multiples of the wavelength). In Figure 7.22, the array height
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is exemplified as a function of the carrier frequency for MV = 16 and
different values of dV. Clearly, the higher the carrier frequency, the
smaller is the array form factor. This makes arrays with a large number
of antennas especially attractive at mmWave frequencies. This aspect
will be discussed in more detail in Section 7.5. As Figure 7.22 shows,
antenna arrays can easily become bulky for frequencies below 5GHz. For
example, a 16× 16 planar array with λ/2 spacing at a carrier frequency
of 2.5GHz has the physical dimensions of 1m× 1m. Thus, in order to
optimally design large antenna arrays, it is important to understand
the role of the antenna spacing as well as the array height and width.

7.4.2 Physical Array Size and Antenna Spacing

To get some simple insight into the array design problem, we will revisit
the analysis of the two-UE LoS uplink channel of (1.25) in a 3D setting
with a planar array. To this end, we focus on the LoS channel model
in (7.13) and assume that the two UEs are respectively located at
the azimuth and elevation angles (ϕ1, θ1) and (ϕ2, θ2). Our goal is to
study how the correlation of the array responses | 1

M a(ϕ2, θ2)Ha(ϕ1, θ1)|
behaves as a function of the array geometry and the angular separation
of the UEs.14 For ease of notation, we introduce the quantities

Ω = sin(θ1)− sin(θ2) (7.26)
Ψ = cos(θ1) sin(ϕ1)− cos(θ2) sin(ϕ2). (7.27)

Since the azimuth and elevation angles are confined within the interval
[−π/2, π/2], it follows that Ω,Ψ ∈ [−2, 2]. The distributions of these
quantities are in general not uniform as they depend on the distribution
of the UEs in the cell sector and on the height at which the antenna
array is installed. This has an impact on the ranges of values of Ω and
Ψ that are of practical importance. Using the definition of a(ϕ, θ) in

14A detailed discussion for the case of a ULA can be found in [314, Sec. 7.2.4].
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(7.13) and (7.14), it is easy to show that
∣∣∣∣

1
M

a(ϕ2, θ2)Ha(ϕ1, θ1)
∣∣∣∣

=
∣∣∣∣∣

1
M

M∑

m=1
ej2π(dVj(m)Ω+dHi(m)Ψ)

∣∣∣∣∣

=

∣∣∣∣∣∣
1
MV

MV−1∑

k=0
ej2πdVkΩ

∣∣∣∣∣∣
︸ ︷︷ ︸

,S(Ω)

∣∣∣∣∣∣
1
MH

MH−1∑

l=0
ej2πdHlΨ

∣∣∣∣∣∣
︸ ︷︷ ︸

,T (Ψ)

. (7.28)

Thus, the correlation can be represented as the product of two functions
S(Ω) and T (Ψ). Note that S(Ω) only depends on the angular separation
of the UEs in the elevation domain while T (Ψ) depends on all azimuth
and elevation angles. As in the proof of Lemma 1.5 in Appendix C.1.4
on p. 583, we can rely on the identity ∑N−1

n=0 q
n = (1− qN )/(1− q) for

q 6= 1, to simplify S(Ω) as follows:

S(Ω) =
∣∣∣∣∣

1
MV

1− ej2πdVMVΩ

1− ej2πdVΩ

∣∣∣∣∣

=
∣∣∣∣∣
ejπdV(MV−1)Ω

MV

e−jπdVMVΩ − ejπdVMVΩ

e−jπdVΩ − ejπdVΩ

∣∣∣∣∣

=
∣∣∣∣

sin(πLVΩ)
MV sin(πdVΩ)

∣∣∣∣ (7.29)

where LV = MVdV is the normalized height of the array. It is easy
to verify that S(Ω) =

√
g(θ1, θ2)/MV, where g(θ1, θ2) was defined in

Lemma 1.5 on p. 184 (using dH = dV and M = MV). Following the
same steps and defining the normalized array width LH = MHdH, we
can express T (Ψ) as

T (Ψ) =
∣∣∣∣

sin(πLHΨ)
MH sin(πdHΨ)

∣∣∣∣ . (7.30)

We can make the following observations from (7.29) and (7.30):

• S(Ω) and T (Ψ) are periodic with period 1
dV

and 1
dH

, respectively;

• S
(
k
LV

)
= 0 for k = 1, . . . ,MV − 1, and T

(
k
LH

)
= 0 for k =

1, . . . ,MH − 1;
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• Both functions peak at Ω = Ψ = 0 with S(0) = T (0) = 1.15

The function S(Ω) is shown for different values of MV and dV in
Figure 7.23. The behavior of T (Ψ) is identical. Both functions have
main-lobes around the origin with a width of 2

LV
and 2

LH
, respectively.16

The maximum values of all other lobes are much smaller. This implies
that the array is not able to separate two UEs whenever for some
integers k and l we have

∣∣∣∣Ω−
k

dV

∣∣∣∣�
1
LV

and
∣∣∣∣Ψ−

l

dH

∣∣∣∣�
1
LH

. (7.31)

These conditions simply say that whenever the signals of two UEs arrive
from similar azimuth and elevation angles they will interfere strongly
with each other. To get a feeling of what “�” means in (7.31), we can
similarly to (1.31) rely on the approximation sin(πz) ≈ πz for |z| < 0.2
to show that S(Ω) ≈ 1 whenever |Ω− k/dV| < 0.2/LV (the same holds
analogously for T (Ψ)). The quantities k, l in the conditions above arise
because S(Ω) and T (Ψ) are periodic and, depending on the antenna
spacing, more than one period fits into the interval [−2, 2] on which
both functions are defined. The conditions in (7.31) also reveal that the
angular resolution of the array in the elevation and azimuth dimension
is respectively defined through its normalized height LV and width LH.
Note that this resolution is not affected by a change of the number
of antennas as long as they are distributed over the same area. For
example, doubling the number of antennas while halving their distances
does not improve the spatial resolution of the antenna array (although
the array gain is increased). Similarly, the width of the main-lobes
depends solely on the physical size of the antenna array but not on
the number of antennas. For this reason, we require physically large
antenna arrays to achieve a high directivity (i.e., narrow main-lobes).

Remark 7.5 (Relation to time-sampling of a band-limited signal). There
is an interesting analogy between the time-sampling of a band-limited

15This can be most easily seen from the definition of S(Ω) and T (Ψ) in (7.28).
16Since both functions are periodic, they also have such lobes around multiples of

1
dV

and 1
dH

, respectively. These lobes are also called main-lobes, while the smaller
lobes in between are called side-lobes.
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Figure 7.23: The function S(Ω) in (7.29) for different values of MV and dV.

signal and the spatial-sampling of an EM field through an antenna array
[268] (see also [314, Sec. 7.3.3]). A passband signal of bandwidth B

allows the receiver to resolve two multipath components only if their
arrival times are separated by more than 1

B . Similar to the observation
that increasing the number of antennas for a fixed array size does not
improve the spatial resolution, increasing the sampling rate does not
help to distinguish more multipath components (or to increase the
time-resolution). Another analogy can be made with respect to OFDM.
A symbol time of Ts creates subcarriers with frequency spacing 1/Ts.
Thus, the frequency resolution is defined by the symbol length and not
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by the number of samples per symbol. Increasing the sampling rate will
increase the bandwidth but not the frequency resolution.

Even though the beamwidth and the angular resolution are indepen-
dent of the antenna spacing (or, equivalently, of the number of antennas),
this parameter has a very important influence on the characteristics
of the antenna array. We have noted earlier that S(Ω) and T (Ψ) are
defined on the interval [−2, 2], that they are periodic with period 1

dV
and 1

dH
, respectively, and that they have a main-lobe around the origin.

Thus, whenever dV ≥ 1
2 or dH ≥ 1

2 , one or more additional main-lobes
appear in the interval of interest. This implies that two UEs whose
signals arrive from azimuth and elevation angles such that Ω = k

dV
or

Ψ = k
dH

, for some integer k, cannot be separated by the array. For this
reason, we often consider antenna arrays with critical spacing dV = 1

2
and dH = 1

2 .17 Antenna arrays with larger/smaller antenna spacing
are called super-/sub-critically spaced. Similar to the fact that under-
sampling of a signal in the time domain creates aliasing (i.e., higher
frequency components are distinguishable from lower frequency compo-
nents), spatial undersampling creates aliasing in the angular domain
since multiple distinct directions cannot be distinguished by the array.

In some cases, it is desirable to have a high angular resolution or
directivity, but one cannot afford to have a physically long/high array
with a large number of critically spaced antennas. As explained above,
super-critical spacing will lead to multiple main-lobes. However, if the
additional main-lobes appear at values outside the feasible range of Ω
and Ψ it does not matter. For example, in a typical cell sector, the
outdoor UEs are located on the ground below the antenna array such
that θ is limited to the range [−π/2, 0]. As a consequence, Ω is limited
to the interval [−1, 1] and a spacing of dV = 1 is sufficient to avoid
the negative effect of having multiple main-lobes. Due to this reason,
antenna arrays for cellular communications have often super-critical
vertical antenna spacing. In some other scenarios, where separability is
not an important criterion, multiple main-lobes can even be desired to
illuminate better certain areas of a cell-sector.

17For critical spacing, the second main-lobe appears only in the pathological case
where θ1 = π/2 and θ2 = −π/2 or θ1 = θ2 = 0, ϕ1 = π/2 and ϕ2 = −π/2.
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In Section 7.3.1, we have already observed that the azimuth angular
resolution of an array depends on the elevation angle. Using (7.30), this
observation can now be mathematically explained. Consider two UEs
whose signals arrive from the same elevation angle θ1 = θ2 = θ but
from different azimuth angles: ϕ1 6= ϕ2. This means Ω = 0 and Ψ =
cos(θ)(sin(ϕ1)−sin(ϕ2)) = cos(θ)Ψ′. The function T ′(Ψ′) = T (cos(θ)Ψ′)
is periodic with period 1

cos(θ)dH
and has nulls for Ψ′ = k/(cos(θ)dHMH).

This is equivalent to the behavior of an array with the same number of
antennas but with reduced horizontal antenna spacing | cos(θ)|dH ≤ dH.
In other words, with increasing elevation angle, the spatial resolution in
the azimuth domain is reduced. For two UEs with the same elevation
angle, the array behaves like a ULA with antenna spacing cos(θ)dH.
This effect is visualized in Figure 7.24, which shows the function T ′(Ψ′)
for different values of θ. The main-lobe is less wide for smaller values of
θ, which improves the resolution.

Although the above discussion is entirely based on a LoS channel
model, it also provides important insights into the representation of
NLoS channels. As described in Section 7.3.3, the channel response of a
NLoS channel is composed of reflections from different scattering clusters
which arrive with different delays from different angular directions. While
the resolvability of such multipath components in the time domain



7.4. Array Deployment 509

depends on the bandwidth, the angular resolvability depends on the
array geometry. One can thus decompose the channel response into
spatially separable components that essentially determine the degrees of
freedom of the wireless channel. For example, a horizontal ULA is able
to sample the angular domain with a resolution of 1/LH. The number
of non-empty “angular bins” determines hence the available degrees of
freedom of the channel. In a pure LoS channel, all signals arrive from
the same direction and fall consequently in the same angular bin. The
angular domain representation of wireless channels was explored in [289]
and is discussed in great detail in [314, Sec. 7.3.3-7].

7.4.3 Cell-Free Systems

A radically different way of deploying large antenna arrays, and even
cellular networks in general, is by distributing subarrays, connected
through optical fibers, over a large geographic area as illustrated in
Figure 7.25. This idea is sometimes referred to as cell-free Massive
MIMO [240, 236], although it is conceptually very close to coordinated
multipoint (CoMP) with joint transmission or network MIMO [126, 325,
156, 46] with the difference that the number of deployed antennas per
UE is assumed to be large, as in Massive MIMO. Expressed with the
parameters of the canonical system model in Definition 2.1 on p. 217, we
have a single cell (i.e., L = 1) in which a BS consisting of S distributed
antenna arrays withMs antennas, s = 1, . . . , S, respectively, is deployed
and serves K UEs. The total number of antennas is M = ∑S

s=1Ms. The
channel hsk ∈ CMs×1 from UE k to subarray s has the spatial correlation
matrix Rs

k ∈ CMs×Ms , so that the overall channel hk ∈ CM×1 of UE k

is modeled as hk ∼ NC (0M ,Rk) where the block-diagonal correlation
matrix is

Rk = diag
(
R1
k, . . . ,RS

k

)
. (7.32)

The SE of such a system is then given by the results in Section 4.
However, the problems of power control and pilot allocation have a
quite different flavor in a setting with distributed arrays and reuse of
pilots within the same cell. Thus, the algorithms described in Sections 7.1
and 7.2 are generally not applicable.
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Figure 7.25: A cell-free Massive MIMO system consisting of five spatially distributed
subarrays with four antennas each.

The key motivation behind cell-free Massive MIMO is to trade-
off channel hardening (as defined in Section 2.5.1 on p. 231) against
macro-diversity.18 Since a UE is likely to have strong channels to only
a few subarrays, its overall channel vector is dominated by a few strong
components [78]; that is, a few of the matrices Rs

k have much larger
eigenvalues than the others. As a result of this strong spatial channel
correlation, the effect of channel hardening is dramatically reduced and
SE expressions that rely on hardening can vastly underestimate the
achievable performance [78]. However, the UL expression in Theorem 4.1
on p. 276 and the DL expression in Theorem 4.9 on p. 326 are still
usable. The increased macro-diversity in cell-free systems can lead to
significant power gains and a more uniform distribution of the received
signal power, especially in urban scenarios with strong shadow fading.

Cell-free systems employ TDD to exploit channel reciprocity and
signal processing relying on only locally available CSI at each subarray,
to avoid the costly exchange of CSI and precoding/combining vectors.
MR is one suitable scheme due to its distributed nature, but subarrays

18Since the subarrays are sufficiently separated, their average channel gain coeffi-
cients to a randomly located UE can be viewed as uncorrelated random variables
(depending on how the subarrays are distributed). This effect is called “macro-
diversity” in contrast to “micro-diversity” which relates to uncorrelated small-scale
fading coefficients of sufficiently spaced antennas of the same subarray.
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with multiple antennas can also process the signals jointly within the
array [61]. Joint power control over all subarrays has been shown to
be beneficial [241, 237]. The price to pay for cell-free Massive MIMO
systems is a high traffic load on the optical fiber connections because
payload data for all UEs must be sent to all subarrays. Given the high
deployment cost of optical fiber and the technical challenges related to
the synchronization and calibration of a large number of distributed
antennas arrays, it is unclear at the time of writing of this monograph
if cell-free systems will be used in practice. One step towards reducing
the backhaul traffic is to serve each UE only by the few subarrays that
have the strongest average channel gains [45]. One alternative but less
radical approach is to have multiple cells with distributed subarrays in
each of them [53].

We will now demonstrate how the effect of channel hardening is
reduced in a cell-free Massive MIMO system. To this end, we consider
a single UE located at the center of a cell of fixed radius in which S
subarrays with MS antennas each are distributed uniformly at random.
We vary the values of S and MS in such a way that the total number of
antennas M = SMS = 256 remains constant. We ignore spatial channel
correlation at the subarrays and focus only on large-scale fading. Thus,
the UE’s channel h ∼ NC(0M ,R) has the correlation matrix

R = diag
(
β1IM/S , . . . , βSIM/S

)
(7.33)

where βs is the average channel gain of subarray s. The channel
gain coefficients are modeled according to (2.3) as βs = −148.1 −
37.6 log10(ds/1 km) + Fs, where ds is the distance between the UE and
subarray s and Fs ∼ N (0, 8) accounts for shadow fading. Recall from
(2.17) that the variance of ‖h‖2 /tr(R) is a suitable measure of channel
hardening, where a smaller variance corresponds to more hardening.
Figure 7.26 shows this variance as a function of S for a cell radius of
either 100m or 350m. We assumed that the subarrays are uniformly
distributed within a disc of radius 100m or 350m around the UE while
keeping a minimum distance of 10m. The results are calculated over
1000 random drops of subarrays. One can clearly see that the variance
increases with the number of subarrays, which means that the channel
hardening is reduced. The smaller the density of subarrays (i.e., the
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Figure 7.26: Variance in (2.17) of ‖h‖2 /tr(R), which measures the closeness to
channel hardening, as a function of the number of subarrays S for a cell radius
of 100m and 350m. The variance is computed with respect to random subarray
locations and small-scale fading realizations.

larger the cell radius), the more pronounced is this effect since there
are fewer dominating subarray links.

Although increasing S reduces the desirable effect of channel harden-
ing, it increases the macro-diversity. This can be seen from Figure 7.27,
which shows the CDF of the average channel gain β = 1

M tr(R) for dif-
ferent numbers of subarrays. Interestingly, the expected average channel
gain E{β} is independent of S (where the expectation is taken with
respect to the subarray locations as well as the shadow fading realiza-
tions) owing to the i.i.d. large-scale fading coefficients of the individual
subarrays. However, going from S = 1 to S = 16 improves the median
of β by around 12.5 dB; increasing this number to S = 256 adds another
9.5dB. Thus, cell-free systems reduce substantially the fluctuations in
average channel gain among the UEs, which is important when the goal
is to guarantee a certain service quality to the UEs, uniformly over the
coverage area.
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Figure 7.27: CDF of the average channel gain β = 1
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tr(R) in a cell-free system
for different numbers of subarrays S ∈ {1, 16, 256}.

7.4.4 Polarization

One of the aspects related to antenna design we have not been discussed
is the polarization of the EM waves radiated by the UEs or BSs. If
one tracks at a fixed location the movement of the tip of the electric
field vector over time, one obtains a curve called the polarization ellipse.
One can then classify the polarization of an EM wave according to
the shape of this ellipse which can be either linear, circular, or ellipti-
cal. In cellular communications, linearly polarized antennas are most
commonly used. The direction of a linear polarization is defined by
the tilt angle of the polarization ellipse; for example, 90◦ (vertical), 0◦
(horizontal), and ±45◦ (slant). Linear polarization always come in two
orthogonal pairs; for example, horizontal and vertical or ±45◦ slant.
An example of a horizontally and a vertically polarized wave is shown
in Figure 7.28. Importantly, any linear polarization can be obtained
from a superposition of two orthogonal polarizations. Antennas which
radiate (or respond to) EM waves with only one polarization direction
are called uni-polarized, while antennas that create (or respond to) field
components in two orthogonal polarization directions are called dual-
polarized. Generally, UEs have uni-polarized antennas or antennas with
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Horizontally
polarized wave

Vertically
polarized wave

Figure 7.28: Polarization ellipse for a horizontally and a vertically polarized wave.

a strong dominating polarization.19 However, one needs to keep in mind
that the effective polarization depends on the physical orientation of the
UE which is generally random (e.g., depending on how a smartphone is
held). For example, a UE with a vertically polarized antenna can create
(or respond to) an EM wave with vertical and horizontal polarization
components if it is rotated by a few degrees. In order to prevent that
radiated energy in one of the polarization directions is lost, BSs are
almost exclusively equipped with dual-polarized antennas.

Ideally, a horizontally polarized EM wave should not be received by
a vertically polarized antenna and vice versa. However, there is generally
some form of cross-talk between both polarization directions due to
imperfect cross-polar isolation (XPI) of the antennas and imperfect
cross-polar discrimination (XPD) of the channel. XPI is a property of the
antenna alone and describes how a (supposedly) linearly polarized an-
tenna responds to cross-polar wave components; that is, the components
of an EM wave in the orthogonal polarization direction. XPD describes
the phenomenon that EM waves can change their polarization when
going through a scattering medium. This effect is also called (channel)
depolarization. In general, the reflection coefficients for each polariza-
tion are different so that the phases of the two orthogonal polarizations
undergo different changes for each reflection. Thus, in a sufficiently rich

19We use the terms “polarization” and “polarization direction” interchangeably.
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scattering propagation environment, the received polarization would be
independent of the transmitted polarization. However, in practice, we
do not have sufficient scattering to observe full depolarization and some
correlation exists [323].

Remark 7.6 (Dual-polarized antenna arrays). When we speak about a
dual-polarized antenna array with M antennas in this monograph, we
consider an antenna array composed of M/2 uni-polarized antennas for
each polarization direction. For space reasons, the antennas for both
polarization directions are generally co-located. This means that an
antenna array with dual-polarized co-located antennas accommodates
twice the number of antennas as a uni-polarized array of the same
physical dimensions.

Channel Model with Dual-polarized Antennas

We will now present a general channel model for a BS antenna array
consisting ofM dual-polarized co-located antennas and a UE with a uni-
polarized, but randomly oriented, antenna, as shown in Figure 7.29.20
This model is inspired by [89, 171]. The interested reader is also re-
ferred to [88, Sec. 3.3] and [249, 293] for a more detailed discussion of
polarization modeling for MIMO systems. Denote by hi,V and hi,H the
channel coefficients from the UE to the ith vertically and horizontally
polarized antenna, respectively. Then, for i = 1, . . . , M2 ,

hi ,
[
hi,V
hi,H

]
= FBSZimUE(θr) (7.34)

where

• FBS ∈ C2×2 is the deterministic polarization matrix of the BS’s
antennas which has orthonormal columns and can be modeled as

FBS = 1√
1 + χa

[
1 √

χae
jφa

−√χaejφa 1

]
(7.35)

where χ−1
a is the XPI and φa a phase offset depending on the

antenna characteristics;
20We assume isotropic radiating antennas. Thus, only the polarization but not

the radiation pattern is affected by rotations.
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Figure 7.29: A BS antenna array with M dual-polarized co-located antennas and
a UE with a uni-polarized, but randomly oriented, antenna. The 2× 1 channel from
the UE to the ith antenna location is denoted FBSZimUE(θr).

• mUE(θr) ∈ C2×1 is the unit-norm polarization vector of the UE’s
antenna, which is modeled as21

mUE(θr) = 1√
1 + χb

[
cos(θr) − sin(θr)
sin(θr) cos(θr)

] [
1√
χbe

jφb

]
(7.36)

where θr ∈ [0, 2π) is the rotation angle of the polarization direc-
tions, χ−1

b is the XPI, and φb a phase offset depending on the
antenna characteristics;

• Zi ∈ C2×2 is the random channel matrix describing the propaga-
tion of the vertical and horizontal EM wave components, which is
defined as

Zi =
[
zi,VV zi,VH
zi,HV zi,HH

]
. (7.37)

Somewhat surprisingly, the 2 × 1 channel hi from the UE to two
co-located dual-polarized antennas depends on four complex random
quantities in Zi which we will characterize next. The XPD describes the

21The matrix in (7.36) is a rotation matrix.
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ability of the channel to separate vertical and horizontal polarizations
and is defined as the ratio (independent of i)

XPD = E
{|zi,VV|2

}

E {|zi,HV|2}
= E

{|zi,HH|2
}

E {|zi,VH|2}
= 1− qXPD

qXPD
(7.38)

that depends on the parameter qXPD = 1/(1 + XPD), which satisfies
0 < qXPD ≤ 1. In this definition, we have used the following assumptions

E
{
|zi,VV|2

}
= E

{
|zi,HH|2

}
= 1− qXPD

E
{
|zi,HV|2

}
= E

{
|zi,VH|2

}
= qXPD

(7.39)

which additionally imply that E {tr (ZiZH
i )} = 2. This means that the

total radiated power is transferred through the channel without any
losses, whatever the value of XPD. The higher the XPD (or the smaller
qXPD), the smaller is the power that leaks from one polarization to
the other. Due to insufficient scattering, it is reasonable to assume
that the components of Zi are correlated. We adopt here the separable
correlation model

Zi =
(

C
1
2
rpGiC

1
2
tp

)
�Σ (7.40)

where � is the Hadamard (or elementwise) product,

Σ =
[√

1− qXPD
√
qXPD√

qXPD
√

1− qXPD

]
(7.41)

is the XPD matrix,

Crp =
[

1 rp
r?p 1

]
, Ctp =

[
1 tp
t?p 1

]
(7.42)

are the receive and transmit polarization correlation matrices, respec-
tively, and

Gi =
[
gi,VV gi,VH
gi,HV gi,HH

]
(7.43)

contains the small-scale fading channel coefficients (whose distributions
also account for the average channel gain β, defined in (2.2)). Since the
horizontally and vertically polarized antennas are co-located, there is no
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additional spatial correlation on top of the polarization correlation be-
tween the elements of Gi. However, the vectors gxy = [g1,xy, . . . , gM

2 ,xy
]T

for x, y ∈ {V,H} consisting of the stacked xy-components of each of the
M/2 channel matrices Gi are spatially correlated with the same corre-
lation matrix R ∈ C

M
2 ×

M
2 ; that is, gxy ∼ NC(0M

2
,R) for x, y ∈ {V,H}.

One can show after some simple algebra that the entire channel matrix
Z = [ZH

1 , . . . ,ZH
M
2

]H ∈ CM×2 can be modeled as

Z =
((

R ⊗Crp

) 1
2 WC

1
2
tp

)
�
(
1M

2
⊗Σ

)
(7.44)

where W ∈ CM×2 has i.i.d. NC(0, 1) elements and ⊗ denotes the
Kronecker product. The final channel vector h = [hH

1 , . . . ,hH
M
2

]H ∈ CM×1

is then given as
h =

(
IM

2
⊗ FBS

)
ZmUE(θr). (7.45)

Measurements have shown that the absolute values of the transmit
and receive polarization correlation are rather small (i.e., |tp|, |rp| < 0.2
[108]) and can be sometimes even fully neglected [25]. The XPD has also
been found to be rather strong in cellular systems, lying in the range
from 5 dB to 15 dB [25]. We can additionally assume in simulations that
the UE’s polarization is uniformly randomly distributed: θr ∼ U [0, 2π).

It is difficult to say if dual-polarized antennas are advantageous for
Massive MIMO systems, apart from allowing for more compact arrays.
To exemplify this issue, consider a BS with a horizontal ULA of either
M critically-spaced uni-polarized or dual-polarized—but not co-located
(i.e., neighboring antennas have orthogonal polarizations)—antennas, as
shown in Figure 7.30. The array has the same number of antennas and
the same length in both cases and hence the same angular resolution
(see (7.31)). We assume that there are three UEs in the cell at azimuth
angles ϕ1 = 30◦, ϕ2 = 25◦, and ϕ1 = −10◦, respectively. Figure 7.31
shows the average correlation E

{|hH
1hi|2/(‖h1‖‖hi‖)2} for i = 2, 3 of

the channels between UE 1 and UE 2 and between UE 1 and UE 3. We
use the local scattering model with Gaussian angular distribution and
ASD of 5◦. The polarization parameters are rp = tp = 0.2, XPD = 7 dB,
and both the BS and the UE have antennas with perfect XPI (i.e.,
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Figure 7.30: A horizontal uni-polarized or dual-polarized (but not co-located) ULA
of M critically-spaced antennas communicating with three UEs.
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Figure 7.31: Average correlation between the channels of UEs 1 and 2 and between
the channels of UEs 1 and 3, as a function of M (in logarithmic scale), for uni- and
dual-polarized antenna arrays.

χa = χb = 0). The UEs’ polarization directions are uniformly randomly
distributed.

We can observe that the dual-polarized array achieves a better
separation of UE 1 and UE 2 than the uni-polarized array. The opposite
is true for UE 1 and UE 3. The reason for this behavior is as follows.
UEs 1 and 2 are located very closely together and their channels have
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similar correlation matrices. We have seen in Figure 7.15 that the
dimension p of the dominating eigenspace (which contains almost all
energy) can be much smaller than M under spatial channel correlation.
Since the UEs essentially share the available degrees of freedom of the
same p-dimensional subspace, the average correlation of their channels
decays not as 1/M but as 1/p. Now, since the orthogonal polarization
components are almost uncorrelated, the dual-polarized array almost
doubles the number of degrees of freedom compared to the uni-polarized
array. Thus, whenever a system is limited by spatial channel correlation,
polarization diversity helps. Figure 7.32a shows the rank of the spatial
correlation matrix of UE 1 for the uni- and dual-polarized arrays as a
function of M . This demonstrates that the use of a dual-polarized array
almost doubles the degrees of freedom. This effect can be also explained
mathematically from (7.45). Since rank(A⊗B) = rank(A)rank(B) for
two matrices A, B with suitable dimensions, it follows that

rank
(
R ⊗Crp

)
= rank (R) rank

(
Crp

)
= 2 rank (R) . (7.46)

On the other hand, UEs 1 and 3 have correlation matrices whose
eigenspaces are very different. Thus, even if each of the UEs’ spatial
correlation matrices had only rank one, their average correlation would
be small because the correlation-eigenspaces are almost orthogonal.
In this case, dual-polarized arrays are disadvantageous because they
increase the dimensions of the subspaces to which the channel vectors are
confined. This can be seen from Figure 7.32b, which shows the chordal
distance (as defined in (7.21)) of the eigenspaces of the correlation
matrices of UE 1 and 3 for the uni- and dual-polarized arrays as a
function of M . The chordal distance for the uni-polarized array is much
larger than that for the dual-polarized array, indicating that it achieves
a better decorrelation of the UEs’ channels.

Due to the rather involved distribution of h in (7.45) with dual-
polarized antennas, we have refrained from explicitly considering polar-
ization in the analysis carried out in this monograph. However, since
we have considered arbitrary correlation matrices in most sections, the
results apply also to correlated Rayleigh fading with dual-polarized
antennas. The interested reader is referred to the rather small number
of publications dealing with dual-polarized Massive MIMO systems,
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Figure 7.32: Comparison of spatial correlation matrices with uni- and dual-
polarization.
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such as [252, 253, 354]. The 3GPP 3D MIMO model [1] and its open-
source implementations [159, 5] support the simulation of dual-polarized
antenna arrays, which will be used in the case study in Section 7.7.

7.5 Millimeter Wavelength Communications

Most wireless communication systems today make use of the 300MHz–
6GHz frequency range while the spectrum from 6–300GHz is compara-
tively empty. This is mainly due to the very advantageous propagation
characteristics at low frequencies which allow the radio waves to pene-
trate buildings, reflect multiple times, and bend around corners. The
mmWave band refers to the frequency range from 30–300GHz with
wavelength ranging from 1–10mm. MmWaves suffer from high atmo-
spheric absorption, rain and foliage attenuation, strong penetration and
reflection losses, and little diffraction, which essentially restrict their
use to LoS outdoor-to-outdoor or indoor-to-indoor communications
over relatively short distances. The current main use cases are wireless
backhaul in the unlicensed 60GHz band, as a cost-efficient alternative
to wired solutions, and WLANs based on the IEEE 802.11ad stan-
dard. Nevertheless, recent theoretical considerations and measurement
campaigns have provided evidence that outdoor SCs with up to 200m
cell radii are viable if the transmitters and receivers are equipped with
sufficiently “large” antenna arrays (in a sense that we will define shortly)
to compensate for the otherwise prohibitive propagation losses [259,
275].

To understand why large antenna arrays or—to be more precise—
antennas composed of a large number of radiating elements (see Defini-
tion 7.3) are needed for mmWave communications, let us have a look at
Friis’ transmission formula [118] which describes the relation between
the received signal power Pr and transmitted signal power Pt for two
antennas separated by distance d under ideal conditions and free-space
propagation:

Pr
Pt

= GrGt

(
λ

4πd

)2
= ArAt

(dλ)2 (7.47)



7.5. Millimeter Wavelength Communications 523

where λ is the wavelength, Gt, Gr and At, Ar are the gains22 and the
effective areas23 of the transmitter and receiver antennas, respectively.
Note that (7.47) assumes that both antennas are perfectly aligned and
neglects that Gt, Gr are generally angle-dependent. The first part of
the equation says that for fixed Gt, Gr, the pathloss Pt/Pr is propor-
tional to λ−2, while the second part says that for fixed At, Ar, the
pathloss is proportional to λ2. The seeming contradiction between
the two results is resolved once we understand that a dipole (or any
other radiating element) has a frequency-independent gain but an ef-
fective area that shrinks with the carrier frequency. For example, a
half-wavelength dipole has an effective area of approximately 0.125λ2,
but a fixed gain of 0.5π over an (hypothetical) isotropic antenna [118]
with effective area λ2/(4π). The effective area of an antenna can there-
fore only be kept constant as λ decreases if more and more radiat-
ing elements are connected together. The number of radiating ele-
ments fitting into a given area is proportional to λ−2 and so is the
resulting antenna gain. The discussion above implies that we can even
achieve a net gain in the received signal power proportional to λ−2,
given that the antennas at the transmitter and the receiver are com-
posed of a large number of radiating elements that scales at the same
speed. However, in order to keep a constant pathloss, it is sufficient
to scale the number of elements such that ArAt ∼ λ2. For example,
the receiver antenna could have a single radiating element while the
number of elements of the transmit antenna scales as λ−2 or vice
versa. Alternatively, the number of elements at both antennas could
be scaled such that their effective areas are linear in λ. For cellular
communications, one could hence have UEs with comparatively few
radiating elements, while BSs with antennas composed of many radi-
ating elements compensate for the vast majority of the propagation
loss.

22The antenna gain is the ratio of the maximum power density radiated by
the antenna in any direction to that of an ideal isotropic antenna. It includes the
antenna’s efficiency, i.e., the ratio of the input power to the total radiated power.

23The effective area of an antenna is equal to the area, oriented perpendicular to
the incoming wave, which would collect the same amount of power as was actually
received by the antenna.
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Figure 7.33: The function N(fc, fc0) versus carrier frequency fc for a fixed ref-
erence carrier frequency fc0 = 2GHz. N(fc, fc0) tells us how many times more
half-wavelength dipoles are needed at the transmit and receive antennas at carrier
frequency fc to maintain the same pathloss as observed at fc0 .

In order to get an idea of the required number of radiating elements
at mmWave frequencies, denote by A(λ) = 0.125λ2 the effective area
of a half-wavelength dipole. Consider now a communication channel
at carrier frequency fc0 (with wavelength λ0) between two antennas
consisting of one (or multiple) such dipoles. According to (7.47), in
order to achieve the same pathloss at carrier frequency fc > fc0 (with
wavelength λ), the antennas at the transmitter and the receiver must
consist of

N(fc, fc0) = λ

λ0

A(λ0)
A(λ) = fc

fc0
(7.48)

times more dipoles. As a rule of thumb, we can therefore say that
doubling the carrier frequency requires twice the number of radiating
elements at both the transmitter and receiver to maintain the same
received signal strength. Figure 7.33 shows N(fc, fc0) as a function
of fc for fc0 = 2GHz. However, one must not forget that the main
motivation of going to higher frequencies is that the available band-
width is dramatically increased, but since the total transmit power is
generally fixed (due to hardware or regulatory constraints), the SNR
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is inversely proportional to the bandwidth. Thus, a communication
system operating at fc = 60GHz with 100MHz of bandwidth would
require transmit and receive antennas consisting of

√
10×30 ≈ 95 times

more radiating elements to maintain the same SNR as a communication
system operating at fc0 = 2GHz with 10MHz of bandwidth.24 In a
cellular setting, this picture might change as the very focused wave
propagation at mmWave frequencies creates essentially isolated commu-
nication channels. Hence, achieving the same SINR at higher frequencies
as at 2GHz would probably be easier than maintaining the same SNR.
The exact comparison is outside the scope of this monograph.

In the discussion above, we considered a single antenna with multiple
radiating elements, according to Definition 7.3. But one must not forget
that, although an antenna with many radiating elements has a very
high gain, which is necessary to overcome the pathloss at mmWave
frequencies, the orientation of its radiation pattern is static and cannot
be controlled with a single RF input. For this reason, subsets of the
radiating elements need to be provided with individual RF inputs
to form an antenna array that has a dynamically controllable array
response.

Although it is quite encouraging that mmWave cellular communica-
tion is rendered possible by large antenna arrays, one must be aware of
the following caveats.

First, we illustrated in Section 7.4.2 that the beamwidth of an an-
tenna array in the elevation (azimuth) domain is inversely proportional
to its normalized vertical height LV (horizontal width LH) measured
in multiples of the wavelength. For a fixed effective area, LV and LH
scale linearly with λ so that the beamwidth is proportional to λ−1. This
means that, although large antenna arrays enable communications at
mmWaves due to their high gain, they only do so if the narrow transmit
and receive beams are well aligned. As a side effect, this implies that
mmWave communication suffers strongly from blocking of the strongest
(LoS) path since most other paths depart/arrive at angles which are not

24The factor 30 is needed to counteract the propagation loss (see Figure 7.33)
while the additional factor

√
10 is required to compensate for the increased level of

noise due to a ten-fold bandwidth extension.
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aligned with the beam directions of the arrays. For these reasons, it is
challenging to provide coverage over a large area and to support highly
mobile UEs with mmWaves. A quickly growing body of literature deals
with the problems of beam training and refinement (see [141, 355] and
references therein).

Second, equipping each radiating element of a large antenna with an
individual RF chain is impossible with today’s technology at mmWave
frequencies, because the size, cost, and power consumption of the re-
quired hardware is prohibitive for use in UEs [274, 141, 355]. In particu-
lar, the PAs and DACs/ADCs are very power consuming at mmWaves
(if the bandwidth is increased) and so is the parallel processing of a large
number of data streams with billions of samples per second. For this
reason, alternative approaches such as analog and hybrid analog-digital
beamforming25 [11] as well as low-resolution DACs/ADCs [222] are
subjects of current research.

Third, as discussed in Remark 2.1 on p. 221, λ has a substantial
impact on τc, which is the size of the coherence block of the wireless
channel. Since the channel coherence time Tc is proportional to λ and
the coherence bandwidth Bc is inversely proportional to the delay spread
Td, the coherence block τc = TcBc satisfies the proportionality

τc ∼
λ

Td
. (7.49)

This equation implies that more frequent pilot signals are required in the
mmWave bands than in the sub-6GHz band. However, since mmWave
communication systems are foreseen to have rather small cell radii and
support only slowly moving UEs, the delay spread is reduced and the
coherence time increased which counterbalances the linear scaling in λ
to some extent. For example, assuming 60GHz carrier frequency (i.e.,
λ = 5mm), delay spread Td = 500ns corresponding to a path length
difference of 150m, and v = 3 km/h mobility, we obtain with the help
of Remark 2.1 a channel with Bc = 1MHz and Tc = 1.5ms, resulting in
a coherence block of τc = 1500 samples.

25Analog beamforming introduces phase shifts to the signals going from a single
RF chain to the individual radiating elements. Hybrid analog-digital beamforming
refers to an antenna array in which each antenna consists of multiple radiating
elements whose phases can be individually controlled via analog beamforming.
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In the light of the constraints and challenges outlined above, it
appears that mmWave communications are best suited for SC hotspot
deployments with the goal of providing high throughput to slowly
moving UEs. Due to the rather low number of RF chains compared to
the number of radiating elements and a relatively small number of UEs
per SC (which are likely not to be served simultaneously on the same
time-frequency resource), we do not consider mmWave communications
as Massive MIMO systems according to Definition 2.1. The interested
reader is referred to the textbook [274] and one of the numerous overview
papers (e.g., [272, 141]) for a more detailed introduction into the topic.

7.6 Heterogeneous Networks

We have argued in Section 1.3 on p. 173 that a combination of cell size
shrinking (i.e., adding more BSs) and increased spatial multiplexing (i.e.,
adding more antennas to each BS to serve more UEs simultaneously) is
needed to satisfy the area throughput requirements of next generation
cellular networks. With both techniques, the network is densified, mean-
ing that the number of antennas per unit area is increased. Massive
MIMO can be seen as a concentrated form of network densification,
while BSs with a small coverage area and only a few antennas, so-called
small-cell base stations (SBSs), are a distributed form of network densi-
fication. From a pure capacity point of view, there is some theoretical
evidence that one should distribute the available antennas as much
as possible [104]. This means that if we would have the freedom to
distribute M antennas over L BSs, we should choose L = M and spread
out the BSs as widely as possible over the coverage area. However, such
a network densification quickly reaches its practical limits because with
antennas located below the rooftops and a cell radius of less than 50m,
supporting highly mobile UEs and providing seamless coverage over
large areas become increasingly difficult. Backhaul provisioning also
becomes prohibitively costly. Cell-free Massive MIMO, as described in
Section 7.4.3, is one approach to tackle these challenges, but how well
it performs under practical conditions remains to be demonstrated. On
the other hand, conventional Massive MIMO is particularly suited to
provide area coverage and to support high mobility. Thus, a simple
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network architecture, integrating the complimentary benefits of Massive
MIMO and SBSs, consists of a coverage tier with Massive MIMO BSs
overlaid with a hotspot tier of SBSs. In this architecture, the Massive
MIMO BSs ensure coverage and serve highly mobile UEs while the
SBSs provide high capacity for indoor and outdoor hotspots. There are
two main challenges related to such an architecture:

1. How to avoid cross-tier interference if BSs and SBSs share the
same spectrum?

2. How to provide backhaul to a large number of SBSs?

It turns out that the significant amount of excess antennas26 at the
Massive MIMO BSs can be used to tackle both of these challenges. This
will be discussed in the remainder of this section.

7.6.1 Massive MIMO for Cross-Tier Interference Mitigation

Consider a two-tier network consisting of a canonical Massive MIMO
system (according to Definition 2.1 on p. 217) overlaid with a hotspot
tier of SBSs. An example of such a network is shown in Figure 7.34. The
only differences between SBSs and BSs are that the former has a smaller
number of antennas, serve fewer UEs, have less transmit power (and
hence a smaller coverage area), and are generally deployed at a lower
height. We can, therefore, model such a two-tier network according to
Definition 2.1 by choosing appropriate (small) values of Mj and Kj for
all indices j that correspond to SBSs. Thus, all results on SE that have
been developed in Section 4 can be directly applied. Note, however,
that due to the rather small number of antennas, there is little channel
hardening, so that the UatF bound (Theorem 4.4 on p. 302) for the UL
SE and the hardening bound (Theorem 4.6 on p. 317) for the DL SE
are less tight. In this section, we refer to the UEs served by the BSs and
SBSs as macro user equipments (MUEs) and small-cell user equipments
(SUEs), respectively.

By Definition 2.1, the BSs and SBSs are assumed to operate accord-
ing to a synchronized TDD protocol and hence share the same spectrum.

26We say that a BS with M antennas serving K UEs has M −K excess antennas.
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Figure 7.34: A heterogeneous network based on a two-tier deployment with Massive
MIMO BSs in the coverage tier and SBSs in the hotspot tier. The BSs serve the
MUEs while the SBSs serve the SUEs.
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Figure 7.35: Operating principles of different duplexing schemes for heterogeneous
networks.
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Figure 7.36: Interfering links in co-channel TDD and co-channel RTDD.

We refer to this as co-channel TDD. However, there are several other pos-
sible duplexing modes that could be employed to communicate over the
available bandwidth: TDD, FDD, and co-channel reverse time-division
duplex (RTDD). The operating principles of these different duplex-
ing modes are illustrated in Figure 7.35. In both the FDD and TDD
schemes, the BS and SBS tiers operate on non-overlapping frequency
bands, while UL and DL transmissions are duplexed in either frequency
(FDD) or time (TDD). Thus, transmissions do not interfere across the
tiers. Unlike the aforementioned schemes, with co-channel TDD and
co-channel RTDD, both tiers share the entire bandwidth. While the UL
and DL transmissions are synchronized in both tiers with co-channel
TDD, their order is reversed in one of the tiers with co-channel RTDD;
that is, the BSs are in DL mode while the SBSs operate in UL mode,
and vice versa. The duplexing mode determines which groups of devices
interfere with each other. For example, in co-channel TDD, the SUEs
interfere with the MUEs in the UL while the BSs interfere with the
SBSs in the DL. This fact is shown in Figure 7.36.

A network-wide synchronized TDD protocol (i.e., co-channel TDD
or co-channel RTDD) and the resulting channel reciprocity have two
important advantages. First, as explained in Section 3.1 on p. 244, the
BSs and SBSs can estimate the DL channels from UL pilots sent by the
MUEs and SUEs. Second, they can estimate the correlation matrix of
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the received signals, which is not only useful for signal detection but
also for the design of interference-aware precoding/combining which
does not require explicit knowledge of the interfering channels. To see
this, recall the M-MMSE combining vector from (4.4):

vjk = pjk




L∑

l=1

Kl∑

i=1
pli
(
ĥjli(ĥ

j
li)

H + Cj
li

)
+ σ2

ULIMj



−1

ĥjjk. (7.50)

The inverse matrix in this expression is E
{
yjyH

j

∣∣{ĥjli}
}
, which is actu-

ally an estimate of the conditional correlation matrix E
{
yjyH

j

∣∣{hjli}
}

of the received signal yj at BS j in (2.5). However, rather than com-
puting this matrix based on the channel estimates of all UEs, which
requires knowledge of the pilot sequences and spatial correlation matri-
ces (cf. Section 3.1), it can be alternatively estimated from the sample
correlation matrix Q̂j , defined as

Q̂j = 1
τu

τu∑

n=1
yj [n]yH

j [n] (7.51)

where yj [n] denotes the nth sample of the received UL data signal at
BS j and τu is the total number of UL data symbols within the current
coherence block. The approximate receive combining vector v̂jk based
on the sample correlation matrix is then given as

v̂jk = pjkQ̂−1
j ĥjjk. (7.52)

Note that BS j still needs to estimate the channels ĥjjk of the served UEs.
Moreover, the quality of Q̂j depends strongly on τu. We have discussed
different aspects of correlation matrix estimation in Section 3.3.3 on
p. 260. Thanks to the channel reciprocity, (7.52) can be also used as an
approximate M-MMSE downlink precoder (cf. (4.37)).

Since the correlation matrix of the received UL signal completely
describes the subspace from which the interference was received, the
BSs and SBSs can simply precode their transmitted data such that less
energy is radiated towards those directions. One can think about this
as if every node sacrifices some of its degrees of freedom (or antennas)
to reduce the interference it creates. This is an especially attractive
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Figure 7.37: A Massive MIMO BS providing wireless backhaul to multiple SBSs.

option for BSs having a large number of excess antennas. Surprisingly,
there is a huge gain in SE when also the SBSs are equipped with a
few antennas and apply this precoding scheme. For more details and a
critical discussion, we refer to [151, 51]. Another possibility to reduce
cross-tier interference with the help of large antenna arrays is spatial
(angular) blanking of certain cell areas [9, 361]. Similar to the concept
of almost-blank subframes in time (as introduced in the LTE Release
10 [14]), this technique creates interference-free spatial zones for SC
communications.

7.6.2 Massive MIMO for Wireless Backhaul

With a Massive MIMO infrastructure in place, it is possible to provide
point-to-multipoint wireless backhaul from the BSs to a fraction of the
SBSs on either the same or a different frequency band. An example
is provided in Figure 7.37. In contrast to what is common practice,
it would be advantageous to use cellular frequencies (≤ 6GHz) for
backhaul signaling and higher (mmWave) frequencies for the SBSs’ data
communications. This would have the benefit that LoS backhaul links are
not necessary and the inter-cell interference between the SBSs is reduced
due to high propagation losses in mmWave bands (cf. Section 7.5). Such
a solution would have the following additional advantages:

• As neither standardization nor backward-compatibility is neces-
sary for backhauling, manufacturers can use proprietary solutions
and rapidly integrate technological innovations.
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• The BS–SBS channels vary very slowly with time, due to the fixed
deployment. Thus, complex (cooperative) transmission/detection
schemes could be implemented which are prohibitive for BS–UE
communications due to practical constraints on channel coherence,
latency, and complexity. For example, multiple BSs could jointly
provide wireless backhaul to a large number of SBSs in a network
MIMO fashion. Also, the utilization of FDD bands might be
feasible as the CSI feedback rate is smaller compared to what is
necessary for BS–UE communication over fast-fading channels.

• Backhaul can be provided dynamically where it is needed; for
example, the backhaul links to empty SBSs can be turned off
such that more resources are available for highly loaded cells. This
would avoid over-provisioning of backhaul capacity and could also
allow for energy savings compared to traditional fiber-optical links
whose energy consumption is independent of the traffic.

• With wireless backhaul links, the SBSs only require a power con-
nection to be operational. Thus, they can be installed wherever
and whenever needed with a minimum amount of manual configu-
ration (e.g., antenna adjustment and wired power supply). This
further reduces the capital and operational expenditures related
to their deployment.

A relevant question in this context is how many antennas we would
need to satisfy a certain backhaul rate (measured in bit/s) with a given
transmit power budget. As the wireless backhaul channels can be seen
as quasi-static (or slowly fading), it is not unreasonable to assume that
CSI regarding the channels to all neighboring SBSs is available at the
BSs and that these can coordinate their transmissions to some extent.
Full sharing of UE data among the BSs might be infeasible as this would
impose an extremely high traffic load on the wired backhaul network.
Therefore, cooperative schemes relying on multicell CSI and only some
additional data exchange are preferable.

Consider the canonical Massive MIMO system from Definition 2.1
on p. 217 and think of UEs as SBSs. We make the additional simplifying
assumption that all BSs have M antennas and serve S SBSs each.
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Moreover, we ignore channel estimation and assume that perfect CSI is
available. We will exemplify a power minimization algorithm from [100]
that allows us to fix a desired SINR target γjs for each backhaul link
in each cell and to find the precoding vectors wjs and transmit powers
ρjs that achieve the minimum necessary total transmit power. In other
words, our goal is to solve the optimization problem

minimize
{ρjs,wjs}

L∑

j=1

S∑

s=1
ρjs (7.53)

subject to SINRDL
js ≥ γjs j = 1, . . . , L, s = 1, . . . , S

‖wjs‖ = 1 j = 1, . . . , L, s = 1, . . . , S

where {ρjs,wjs} denotes the set of transmit powers and precoding
vectors and
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(7.54)

is the instantaneous SINR of SBS s in cell j. The solution to (7.53) is
provided by the following theorem.

Theorem 7.3 ([100]). The solution to (7.53), if it exists, is given by ρ?js
and w?

js = v?js/‖v?js‖ for j = 1, . . . , L, s = 1, . . . , S, where
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hjjs (7.55)

with λ?js being the unique solutions to the set of fixed-point equations

λ?js =
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(7.56)

for j = 1, . . . , L and s = 1, . . . , S, where ρ?js are the unique solutions to
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the set of equations

ρ?js
γjs

∣∣∣
(
w?
js

)H
hjjs
∣∣∣
2
−

S∑

i=1
i 6=s

ρ?ji

∣∣∣
(
w?
ji

)H
hjjs
∣∣∣
2

−
L∑

l=1
l6=j

S∑

i=1
ρ?li

∣∣∣(w?
li)

H hljs
∣∣∣
2

= σ2
DL. (7.57)

The solution to (7.56) can be computed by a standard fixed-point
algorithm which iteratively updates λ?js starting from some random
initial values. Equation (7.57), can be written in a matrix form and
solved through matrix inversion. Note, that if (7.53) is infeasible, no
solution to (7.56) is found (i.e., the fixed-point algorithm does not
converge).

To exemplify the backhauling, we consider an extension of the
running example, described in Section 4.1.3 on p. 288, in which S = 81
SBSs are distributed on a regular grid within each cell. The channels
from the BSs to the SBSs are modeled in the same way as the UE
channels; that is, 20MHz of bandwidth is used, uncorrelated Rayleigh
fading is considered, and the shadow fading has σsf = 10. We first fix a
maximum transmit power per BS and a desired DL SINR target for each
backhaul link. Then using Theorem 7.3, we start with M = 1 and find
the minimum transmit power necessary to achieve all SINR targets. If an
SINR target is infeasible or the necessary transmit power is too high, we
increase the number of antennas M until the problem becomes feasible
and the transmit power is below the desired level. As the algorithm in
(7.56) converges slowly for high SINR targets and it is computationally
expensive for large systems, we resort to an asymptotic approximation
(assuming very large values of M and S) of this algorithm instead [187,
285]. It only utilizes the average channel gains of all channels and its
complexity is independent of the number of antennas. For medium- to
large-sized systems (i.e., M,S > 20), the difference between the exact
and approximate algorithms is generally very small.

In Figure 7.38, we show the minimum number of BS antennas
necessary to provide a desired DL backhaul rate to either all, 40, or 20
randomly selected SBSs in each cell with a maximum power budget of



536 Practical Deployment Considerations

0 20 40 60 80 100
0

100

200

300

400

500

Downlink backhaul rate [Mbit/s]

R
eq

ui
re

d 
nu

m
be

r 
of

 B
S 

an
te

nn
as

 

 
S=81
S=40
S=20

0 10 20 30 40 50
Uplinkbackhaul rate [Mbit/s]

Figure 7.38: Required number of BS antennas M versus the DL/UL backhaul rates
for different numbers of randomly selected SBSs S ∈ {20, 40, 81} and a maximum
average transmit power of 46 dBm per BS.

0 20 40 60 80 100
15

20

25

30

35

40

45

50

Downlink backhaul rate [Mbit/s]

M
in

im
um

 t
ra

ns
m

it 
po

w
er

 p
er

 B
S 

[d
Bm

]

 

 

S=81
S=40
S=20

0 10 20 30 40 50
Uplinkbackhaul rate [Mbit/s]

Figure 7.39: Minimum required transmit power per BS versus the DL/UL backhaul
rates for different numbers of randomly selected SBSs S ∈ {20, 40, 81}. For each target
rate, the smallest possible number of antennas is chosen according to Figure 7.38.
The dashed line indicates the maximum transmit power of 46 dBm.
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46 dBm per BS. Due to the classic UL-DL duality [370, 63, 335, 163], it
is possible to achieve the same UL SINR using the precoding vectors
w?
js as receive combining vectors (although the power allocation must

be recomputed). By fixing the UL-DL transmission ratio to τu/τd = 2/3,
the UL rates are 50% smaller than the DL rates. We remark that
the UL-DL duality only ensures that the sum of the transmit powers
of the BSs and SBSs are equal, but do not respect any individual
power constraints. One can see from the figure that the number of
antennas increases approximately linearly with the target rate and the
number of simultaneously served SBSs. Serving 20 SBSs at a rate of
100Mbit/s requires M = 122 antennas per BS. If the number of SBSs
(and hence the aggregated rate) is doubled, 244 antennas are necessary,
which becomes 493 if all 81 SBSs are simultaneously provided with
backhaul. In the same context, Figure 7.39 shows the average transmit
power per BS that is needed to achieve a certain backhaul rate using
the smallest possible number of antennas provided in Figure 7.38. As
one would expect, the smaller the number of SBSs (and hence the
aggregate sum rate which must be delivered by each BS), the smaller is
the necessary transmit power. For large target rates, the entire power
budget is needed, independently of the number of SBSs. The curves
are not entirely smooth since each point on the curves uses a different
number of antennas.

In summary, Figures 7.38 and 7.39 provide some evidence that high-
speed backhaul provisioning via Massive MIMO BSs is possible up to a
very large number of SBSs per cell. In our example, in order to provide
backhaul with 100Mbit/s in the DL and 50Mbit/s in the UL to 81
SBSs per cell using 20MHz of bandwidth, which corresponds to an
aggregate area throughput of 8.1Gbit/s/km2, around 500 antennas and
46 dBm of transmit power per BS are necessary.

7.7 Case Study

We conclude this monograph with a case study that will jointly analyze
some of the practical deployment aspects and tradeoffs that have been
described earlier in this section. The purpose is to give a baseline for
the anticipated throughput of Massive MIMO, using MR or RZF pro-
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Figure 7.40: The case study considers 16 BSs on a square grid with a wrap-around
topology. Note that, due to large-scale fading, the coverage area of each BS will not
be the square area around the BS.

cessing, LS channel estimation, and some previously described resource
allocation schemes. We stress that higher throughput can potentially
be achieved by optimizing the array deployment (based on the propa-
gation environment) and by exploiting MMSE channel estimation and
M-MMSE processing.

7.7.1 Network Configuration and Parameters

We consider the network setup illustrated in Figure 7.40. Similar to
the running example, which was described in Section 4.1.3 on p. 288,
the case study considers L = 16 cells that are distributed on a 4 × 4
square grid with 250m inter-BS distance. The channels are generated
based on the 3GPP 3D UMi NLoS channel model from [1], using the
open-source QuaDRiGa implementation developed by the Fraunhofer
Heinrich Hertz Institute [159].27 Within the 250m × 250m geographical
area closest to each BS, we distribute 10 UEs uniformly at random (at

27The simulation results were generated using QuaDRiGa version 1.4.8-571.
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Parameter Value
Network layout Square pattern (wrap-around)
Number of cells L = 16
Inter-BS distance 250m
UE dropping K = 10 UEs in 250m × 250m

area around each BS,
with 35m minimum distance

Channel model 3GPP 3D urban microcell (UMi)
BS array configurations Cylindrical arrays:

10× 5× 2 (M = 100),
20× 5× 1 (M = 100),
20× 5× 2 (M = 200)

BS height 25m
UE height 1.5m

Carrier frequency 2GHz
Bandwidth B = 20MHz

Number of subcarriers 2000
Subcarrier bandwidth 10 kHz

Maximum UE transmit power 20 dBm
Maximum BS transmit power 30 dBm

Receiver noise power −94 dBm
Cyclic prefix overhead 5%
Frame dimensions Bc = 50 kHz, Tc = 4ms

Subcarriers per frame 5
Useful samples per frame τc = BcTc/1.05 ≈ 190

Pilot reuse factor f = 2
Number of pilot sequences τp = 30

Channel estimation LS
Combining and precoding RZF or MR

Table 7.2: Network parameters in the case study.

distances larger than 35m from the BS). The UEs are at outdoor NLoS
locations, 1.5m above the ground. Each UE is associated with the BS
that provides the strongest average channel gain, which results in an



540 Practical Deployment Considerations

uneven number of UEs per cell due to the shadow fading characteristics
of the channel model. Note that one could, potentially, obtain better
performance by also taking the spatial channel correlation into account
in the UE-BS association.

Each BS is deployed at an elevated location, 25m above the ground.
We consider a cylindrical array that covers an entire cell (i.e., 360◦),
without the need for cell sectorization. The BS operates at a 2GHz
carrier frequency and we assume an antenna spacing of λ/2 in the
horizontal and vertical direction. We describe the antenna configuration
as “horizontal × vertical × polarization”, which refers to the number
of antennas on each circle, number of circles in the vertical direction,
and number of polarizations (see Remark 7.6 on p. 515), respectively.
We consider three configurations: 10× 5× 2, 20× 5× 1, and 20× 5× 2.
The first and second configurations require M = 100 RF chains, while
the third one requires M = 200 RF chains. The array is 37.5 cm high in
all cases, while the diameter is 23.9 cm in the first configuration and
47.7 cm in second and third configurations. Note that by considering
dual-polarized co-located antennas, we can effectively double the number
of antennas (and RF chains) compared to having uni-polarized antennas,
without increasing the array size; see Section 7.4 for further details.

We consider an OFDM system with a bandwidth of B = 20MHz,
which is divided into 2000 subcarriers that are each 10 kHz wide. The
transmission protocol is based on dividing the time-frequency resources
into frames of Bc = 50 kHz and Tc = 4ms. All UEs are assumed to
have channel coherence blocks that are equal or larger than the frame
dimension. Hence, the channel responses are fixed and identical over
the five subcarriers in a frame. The cyclic prefix (which combats inter-
symbol interference) is assumed to increase the OFDM symbol duration
by 5%, thus there are τc = BcTc/1.05 ≈ 190 useful samples per frame.
In each frame, τp = 30 samples are used for pilots. We consider a pilot
reuse factor of f = 2, which results in τp/f = 15 pilots per BS. These
pilots are distributed uniformly at random to the UEs in the cell, and
some remain unused when there are fewer than 15 UEs in the cell. In
the unlikely event that more than 15 UEs connect to a BS, a random
subset of exactly 15 UEs is scheduled. The remaining 160 samples per
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frame are used for payload data, whereof 1/3 is used for UL and 2/3 is
used for DL. All active UEs are scheduled over all subcarriers and the
maximum UL transmit power is 20dBm. The maximum DL transmit
power per BS is 30 dBm. Note that both numbers are at least an order
of magnitude smaller than in current LTE systems (cf. Remark 4.1
on p. 291), but we will anyway achieve higher throughput in Massive
MIMO thanks to the array gain and spatial multiplexing. The receiver
noise power is −94 dBm.

To showcase the baseline throughput that can be achieved without
requiring knowledge of channel statistics, we consider LS channel esti-
mation. Since M-MMSE combining/precoding does not work well under
LS estimation (cf. Figures 4.14 and 4.20), we only consider MR and
RZF combining/precoding in this case study.

7.7.2 Simulation Results

We consider the DL and UL throughput of the UEs with different
power allocation/control schemes and for different random user drops.
Figure 7.41a and Figure 7.41b show the CDFs of the DL throughput
with max product SINR and max-min fairness power allocation, respec-
tively.28 These power allocations are obtained using the optimization
algorithms described in Section 7.1.1. The first observation is that the
choice of antenna configuration has a great impact on the throughput.
The dual-polarized configuration 20 × 5 × 2 with M = 200 provides
higher throughput, for every UE, than the uni-polarized configuration
20× 5× 1 with M = 100. The uni-polarized configuration is, however,
preferable compared with the dual-polarized configuration 10× 5× 2,
which also has M = 100. The conclusion is that, for arrays with a fixed
physical size, dual-polarized arrays are beneficial due to the higher array
gain that is obtained by having twice the number of antennas. If instead
the number of RF chains is the limiting factor in the implementation,
a physically larger array with uni-polarization (or dual-polarization
but not co-located antennas) is preferable due to the higher spatial
resolution.

28Equal maximum UL power is assumed for the pilot transmission when evaluated
the DL.
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(a) Max product SINR power allocation.
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Figure 7.41: CDF of the DL throughput per UE in the case study. We compare
different array configurations, transmit precoding schemes, and power allocation
schemes.



7.7. Case Study 543

Scheme 95% likely Median 5% likely
Max product SINR (MR) 6.0Mbit/s 22.1Mbit/s 48.7Mbit/s
Max product SINR (RZF) 7.5Mbit/s 38.1Mbit/s 70.1Mbit/s
Max-min fairness (MR) 9.3Mbit/s 11.7Mbit/s 13.7Mbit/s
Max-min fairness (RZF) 12.6Mbit/s 17.0Mbit/s 21.7Mbit/s

Table 7.3: DL throughput per UE in the case study, with different power allocation
and precoding schemes. The 20× 5× 2 antenna configuration is considered.

We now concentrate on the preferable 20× 5× 2 antenna configura-
tion and compare the different power allocation and precoding schemes.
With max product SINR power allocation, the average UE through-
put is 24.1Mbit/s with MR and 37.7Mbit/s with RZF, but there are
substantial variations between the UEs. With max-min fairness power
allocation, the average throughput is reduced to 11.6Mbit/s with MR
and to 17.1Mbit/s with RZF, but there is greater fairness in the sense of
smaller variations and higher throughput for the UEs with the weakest
channel conditions. These observations are further provided in Table 7.3,
which shows the 95% likely, median, and 5% likely UE throughput. The
throughput that is guaranteed to 95% of the UEs is around 70% higher
with max-min fairness, compared with max product SINR. However, the
median is 85%–105% higher with max product SINR power allocation,
and the UEs with the 5% best channels achieve even higher gains with
this scheme.

The CDF of the UL throughput is shown in Figure 7.42. We consider
the power control framework described in Section 7.1.2, where the largest
received power ratio within a cell is limited to ∆. We consider ∆ = 20 dB
in Figure 7.42a and ∆ = 0 dB in Figure 7.42b. The UL results confirm
many of the observations made in the DL. For a given number of
RF chains, it is beneficial to have a physically larger uni-polarized
array. For a given physical array size, it is instead beneficial to use
dual polarization to squeeze in more antennas. There are substantial
variations in throughput between the UEs, particularly with ∆ = 20 dB,
but also with ∆ = 0 dB since the heuristic UL power control is performed
independently in every cell—in contrast to the DL power allocation,
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(a) Heuristic power control policy in (7.11) with ∆ = 20dB.
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Figure 7.42: CDF of the UL throughput per UE in the case study. We compare
different array configurations, receive combining schemes, and power control schemes.
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Scheme 95% likely Median 5% likely
∆ = 20dB (MR) 0.9Mbit/s 9.2Mbit/s 30.8Mbit/s
∆ = 20dB (RZF) 2.8Mbit/s 19.7Mbit/s 44.6Mbit/s
∆ = 0dB (MR) 2.7Mbit/s 9.1Mbit/s 22.3Mbit/s
∆ = 0dB (RZF) 3.4Mbit/s 13.6Mbit/s 31.0Mbit/s

Table 7.4: UL throughput per UE in the case study, with different combining
schemes and different values of the maximum received power ratio ∆ that is used for
power control. The 20× 5× 2 antenna configuration is considered.

where max-min fairness power allocation attempts to give the same
throughput to every UE in the entire network.

Focusing on the preferable 20 × 5 × 2 antenna configuration and
∆ = 20dB, the average UE throughput is 11.6Mbit/s with MR and
21.1Mbit/s with RZF. In case of ∆ = 0 dB, the average UE throughput
is reduced to 10.6Mbit/s with MR and 15.3Mbit/s with RZF, but the
95% likely throughput is higher than with ∆ = 20dB. The 95% likely,
median, and 5% likely UE throughput are provided in Table 7.4. A
smaller ∆ improves the baseline throughput that is guaranteed to 95%
of the UEs, at the cost of reducing the median throughput and also the
throughput of the UEs with the strongest channels. Generally speaking,
the throughput differences are larger in the UL than in the DL due to
the power control scheme.

In summary, the average DL sum throughput per cell can be as large
as 373Mbit/s over a 20MHz channel, which corresponds to an area
throughput of 6.0Gbit/s/km2. The average UL sum throughput per cell
can be as large as 209Mbit/s, which corresponds to an area throughput
of 3.3Gbit/s/km2. Note that the substantial differences between the
throughput in DL and UL are caused by the fact that twice as many sam-
ples per frame are used for DL data transmission as for UL data transmis-
sion — the average SE is approximately the same in both directions. To
put the area throughput values into context, we can compare them with
a contemporary LTE system, as described in Remark 4.1 on p. 291. Such
a system would deliver 263Mbit/s/km2 in the DL and 115Mbit/s/km2

in the UL in a corresponding scenario. We conclude that, in this case
study, Massive MIMO delivers 20–30 times higher throughput.
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7.8 Summary of Key Points in Section 7

• The UEs in a cellular network have conflicting performance
goals due to the interference and shared power budgets.
Power allocation can be used to find a tradeoff between ag-
gregate throughput and fairness between the UEs. Maximiz-
ing the product of the effective SINRs leads to a reasonable
tradeoff. Thanks to channel hardening, the SINRs only de-
pend on large-scale fading and the same solution can be used
over many channel coherence blocks.

• Despite the large number of UEs, resource allocation is fairly
simple since the UEs are separated spatially and, thus, every
UE can use the full bandwidth whenever needed. When
Massive MIMO is deployed with a high antenna-UE ratio,
time-frequency scheduling is only needed to cope with traffic
peaks, when there are more UEs than pilots or insufficient
spatial resolution. This is a paradigm shift from conventional
networks, which constantly rely on time-frequency scheduling
to serve the UEs. The assignment of pilots to UEs and traffic
load variations have little impact on the average sum SE,
but can affect the SE of particular UEs.

• The spatial channel correlation depends mainly on the an-
tenna array geometry (aperture, antenna spacing) and the
angular spread, and must be accounted for by any realis-
tic channel model. Channel measurements have confirmed
favorable propagation in practice.

• The angular resolution of an antenna array depends on its
aperture and not on the number of antennas. Critically
spaced antennas are needed to avoid aliasing in the angular
domain. Dual-polarized co-located antennas can significantly
reduce the size of an array, but the theoretical performance
analysis with polarization is difficult. Modern geometry-based
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channel models support polarization and can be used in
simulations.

• MmWave frequencies suffer from high propagation loss—that
can be overcome by large antenna arrays—and are best
suited for hotspots and low mobility scenarios. Due to a
small number of RF chains compared to the number of
radiating elements and a small number of UEs per cell,
mmWave communication systems differ fundamentally from
the definition of Massive MIMO in Definition 2.1 on p. 217.

• Massive MIMO plays a key role in heterogeneous networks
to ensure coverage over large areas and to serve fast-moving
UEs. A two-tier network consisting of Massive MIMO BSs
and SBSs together with a synchronized TDD protocol allows
the BSs to use their excess antennas to reduce intra-tier
interference. Massive MIMO is also a promising solution for
wireless backhaul provisioning to a large number of SBSs,
without the need for LoS links.

• We have provided a case study based on state-of-the-art chan-
nel models, optimized resource allocation, and conservative
assumptions on the selection of signal processing schemes. It
demonstrates that Massive MIMO can deliver tens of Mbit/s
per UE in both UL and DL over a channel of 20MHz band-
width. With around 10 UEs per cell, this results in an area
throughput of several Gbit/s/km2.
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A
Notation and Abbreviations

Mathematical Notation

Upper-case boldface letters are used to denote matrices (e.g., X,Y),
while column vectors are denoted with lower-case boldface letters
(e.g., x,y). Scalars are denoted by lower/upper-case italic letters (e.g.,
x, y,X, Y ) and sets by calligraphic letters (e.g., X ,Y).

The following mathematical notations are used:

CN×M The set of complex-valued N ×M matrices
RN×M The set of real-valued N ×M matrices
CN ,RN Short forms of CN×1 and RN×1 for vectors
RN+ The set of non-negative members of RN
x ∈ S x is a member of the set S
x 6∈ S x is not a member of the set S
{x ∈ S : P} The subset of S containing all members

that satisfy a property P
an � bn This denotes an − bn →n→∞ 0 almost surely,

for two infinite sequences of random variables an, bn
[x]i The ith element of a vector x
[X]ij The (i, j)th element of a matrix X
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diag(·) diag(x1, . . . , xN ) is a diagonal matrix with
the scalars x1, . . . , xN on the diagonal,
diag(X1, . . . ,XN ) is a block diagonal matrix with
the matrices X1, . . . ,XN on the diagonal

X? The complex conjugate of X
XT The transpose of X
XH The conjugate transpose of X
X−1 The inverse of a square matrix X
X 1

2 The square-root of a square matrix X
<(x) Real part of x
=(x) Imaginary part of x
j The imaginary unit
|x| Absolute value (or magnitude) of a scalar variable x
bxc Closest integer smaller or equal to x
dxe Closest integer greater or equal to x
e Euler’s number (e ≈ 2.718281828)
max(x, y) The maximum of x and y
mod(x, y) The modulo operation, i.e., the remainder of the

Euclidean division of x by y
loga(x) Logarithm of x using the base a ∈ R+
E1(x) The exponential integral function,

defined as E1(x) =
∫∞

1
e−xu
u du

sin(x) The sine function of x
cos(x) The cosine function of x
tan−1(x) The inverse tangent function of x,

also known as arctan(x)
W (x) The Lambert function, see Definition B.2 on p. 567
x! The factorial function for positive integers x,

defined as x! = x(x− 1) · . . . · 1
tr(X) Trace of a square matrix X
det(X) Determinant of a square matrix X
X�Y Hadamard (elementwise) product of X, Y
X⊗Y Kronecker product of X, Y
rank(X) Rank of X (i.e., number of non-zero singular values)
N (x,R) The real Gaussian distribution
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with mean x and covariance matrix R
NC(0,R) The circularly symmetric complex Gaussian

distribution with zero mean and correlation matrix R,
where circular symmetry means that if y ∼ NC(0,R)
then ejφy ∼ NC(0,R) for any given φ

NC(x,R) The generalization of the circularly symmetric complex
Gaussian distribution to a non-zero mean x, where
circular symmetry holds if the mean is subtracted

Exp(x) Exponential distribution with rate x > 0
χ2(x) Chi-squared distribution with x degrees of freedom
Lap(µ, σ) Laplace distribution with mean µ and

standard deviation σ, with PDF f(x) = 1√
2σe
−
√

2|x−µ|
σ

U [a, b] Uniform distribution between a and b
Po(λ) Poisson distribution with mean value and variance λ
E{x} The expectation of a random variable x
V{x} The variance of a random variable x
‖x‖ The L2-norm ‖x‖ =

√∑
i |[x]i|2 of a vector x

‖X‖F The Frobenius norm ‖X‖F =
√∑

i,j |[X]ij |2 of X
‖X‖2 The spectral norm of X

(i.e., the largest singular value)
eigp(X) The p-dominant eigenspace of a Hermitian matrix X,

see Definition 7.1 on p. 490
IM The M ×M identity matrix
1N The N × 1 matrix (i.e., vector) with only ones
1N×M The N ×M matrix with only ones
0M The M × 1 matrix (i.e., vector) with only zeros
0N×M The N ×M matrix with only zeros

System Model Notation

The following symbols are commonly used in the system model of this
monograph:

a(ϕ, θ) Spatial signature of an antenna array
Aj
li Matrix used as Aj

liy
p
jli in an arbitrary linear estimator of hjli
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α Pathloss exponent in the large-scale fading model of (2.3)
B Total bandwidth used for communication [Hz]
Bc Channel coherence bandwidth [Hz]
βjli Average channel gain tr(Rj

li)/Mj per antenna of
the channel hjli between BS j and UE i in cell l

Cj
li Estimation error correlation matrix for channel between

BS j and UE i in cell l
D Average cell density [cells/km2]
dH, dV Horizontal and vertical antenna spacing of a uniform

planar array measured in multiples of the wavelength λ
djli Distance in km between BS j and UE i in cell l
∆ Maximum received power difference in the power

control policy in (7.11)
fc Carrier frequency [Hz]
gjk Precoded channel (hjjk)Hwjk to UE k in cell j from its BS
hjli Channel response between BS j and UE i in cell l
ĥjli Estimate of the channel hjli between BS j and UE i in cell l
h̃jli Estimation error defined as h̃jli = hjli − ĥjli
Ĥj
l Matrix defined in (3.12) with the channel responses

between BS j and all UEs in cell l
j, l, l′ Used as cell indices
k, i, i′ Used as UE indices
k(ϕ, θ) Wave vector of a planar wave
K Number of UEs per cell (if it is the same in all cells)
Kj Number of UEs in cell j
κBS
t Transmitter hardware quality of a BS
κBS
r Receiver hardware quality of a BS
κUE
t Transmitter hardware quality of a UE
κUE
r Receiver hardware quality of a UE
λ Wavelength [m]
L Number of cells
LBS Computational efficiency of the BS (in flops/Watt)
M Number of BS antennas (if it is the same in all cells)
Mj Number of BS antennas in cell j
Pjk Set of UEs using the same pilot as UE k in cell j
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PDL
max Maximum DL transmit power per BS
PUL

max Maximum UL transmit power per UE
pjk UL transmit power used by UE k in cell j
ρjk DL transmit power allocated to UE k in cell j
ϕ Azimuth angle
φjk Pilot sequence associated with UE k in cell j
Φ Pilot book with τp mutually orthogonal sequences
Ψj
li Inverse of the correlation matrix in the estimation of

the channel between BS j and UE i in cell l;
Defined in (3.10) with ideal hardware and
in (6.24) with hardware impairments

PBS Power per BS antennas for transceiver hardware
PBT Power per (bit/s) for backhaul traffic
PCOD Power per (bit/s) for data encoding
PDEC Power per (bit/s) for data decoding
PFIX Fixed power of a BS, which is independent of traffic load,

number of BS antennas, and number of UEs
PLO Power per LO
PUE Power per UE for transceiver hardware
Rj
li Correlation matrix of the channel between

BS j and UE i in cell l
SNRpjk Effective SNR in (3.13) in the pilot transmission

of UE k in cell j
σ2

DL Noise variance in the DL
σ2

UL Noise variance in the UL
σϕ ASD in the local scattering model, see Section 2.6 on p. 235
σsf Standard deviation of the shadow fading in

the large-scale fading model defined in (2.3)
θ Elevation angle
Tc Channel coherence time [s]
Td Delay spread [s]
τc Number of samples per coherence block (equals BcTc)
τd DL data samples per coherence block
τp Number of samples allocated for pilots per coherence block
τu UL data samples per coherence block
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U(·) Utility function in power allocation optimization
Υ Median channel gain at a reference distance of 1 km

in the large-scale fading model of (2.3)
vjk Receive combining vector for UE k in cell j
wjk Transmit precoding vector for UE k in cell j
ypjli Processed received pilot signal, defined in (3.2)

Abbreviations

The following acronyms and abbreviations are used in this monograph:

3GPP 3rd Generation Partnership Project
ACLR Adjacent-Channel Leakage Ratio
ADC Analog-to-Digital Converter
AoA Angle of Arrival
AoD Angle of Departure
ASD Angular Standard Deviation
ATP Area Transmit Power
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BPSK Binary Phase-Shift Keying
BS Base Station
CDF Cumulative distribution function
CDMA Code-Division Multiple Access
CoMP Coordinated Multipoint
CP Circuit Power
CSI Channel State Information
DAB Digital Audio Broadcast
DAC Digital-to-Analog Converter
DFT Discrete Fourier Transform
DL Downlink
EE Energy Efficiency
EM Electromagnetic
ETP Effective Transmit Power
EVM Error Vector Magnitude
EW-MMSE Element-Wise MMSE
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FBMC Filter Bank Multi-Carrier
FDD Frequency-Division Duplex
GSM Global System for Mobile Communications
HE Hardware Efficiency
i.i.d. Independent and Identically Distributed
I/Q In-Phase/Quadrature
IEEE Institute of Electrical and Electronics Engi-

neers
JSDM Joint Spatial-Division and Multiplexing
LMMSE Linear MMSE
LO Local Oscillator
LoS Line-of-Sight
LS Least-Squares
LTE Long Term Evolution
MISO Multiple-Input Single-Output
M-MMSE Multicell Minimum Mean-Squared Error
MIMO Multiple-Input Multiple-Output
MMSE Minimum Mean-Squared Error
mmWave Millimeter Wavelength
MR Maximum Ratio
MSE Mean-Squared Error
MUE Macro User Equipment
NLoS Non-Line-of-Sight
NMSE Normalized MSE
OFDM Orthogonal Frequency-Division Multiplexing
PA Power Amplifier
PC Power Consumption
PDF Probability Density Function
PSK Phase-Shift Keying
QAM Quadrature Amplitude Modulation
RA Random Access
RACH Random Access Channel
RF Radio Frequency
RTDD Reverse Time-Division Duplex
RZF Regularized Zero-Forcing
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SBS Small-Cell Base Station
S-MMSE Single-Cell Minimum Mean-Squared Error
SC Small Cell
SDMA Space-Division Multiple Access
SE Spectral Efficiency
SIMO Single-Input Multiple-Output
SINR Signal-to-Interference-and-Noise Ratio
SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio
SUE Small-Cell User Equipment
TDD Time-Division Duplex
UatF Use-and-then-Forget
UE User Equipment
UL Uplink
ULA Uniform Linear Array
UMi Urban Microcell
UMTS Universal Mobile Telecommunications System
WLAN Wireless Local Area Network
XPD Cross-Polar Discrimination
XPI Cross-Polar Isolation
ZF Zero-Forcing



B
Standard Results

This appendix provides a brief overview of some theoretical results
and methodologies that lay the foundation on which this monograph
rests. This includes matrix analysis, random vectors, estimation theory,
information theory, and optimization.

B.1 Matrix Analysis

B.1.1 Computational Complexity of Matrix Operations

Basic linear algebra operations, such as matrix-matrix multiplications
and matrix inversions, have a well-defined structure and can thus be
implemented efficiently in hardware. Nevertheless, the computational
complexity can be a bottleneck when large matrices need to be manip-
ulated every millisecond. The exact complexity of a matrix operation
depends strongly on the hardware implementation, including the bit
width (i.e., the number of binary digits used to represent a number) and
the data type (e.g., floating point or fixed point). In this section, we
provide first-order approximations by counting the number of complex
multiplications and divisions that are needed, while the complexity of
additions/subtractions is neglected since these operations are much
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easier to implement in hardware.

Lemma B.1. Consider the matrices A ∈ CN1×N2 and B ∈ CN2×N3 .
The matrix-matrix multiplication AB requires N1N2N3 complex mul-
tiplications. The multiplication AAH only requires N2

1 +N1
2 N2 complex

multiplications, by utilizing the Hermitian symmetry.

Proof. There are N1N3 elements in AB and the computation of each
element involves N2 multiplications (the elements of one row in A are
multiplied by the corresponding elements of one column in B). In the
case of B = AH, the Hermitian symmetry is utilized to only compute
N2

1 +N1
2 elements, which represent the main diagonal and half of the

off-diagonal elements.

When the inverse of a matrix is multiplied by another matrix, the
LDLH decomposition can be used to achieve an efficient hardware
implementation, both in terms of computations and memory usage
[183]. The matrix L is a lower triangular matrix with ones on the main
diagonal and D is a diagonal matrix.

Lemma B.2. Consider the Hermitian positive semi-definite matrix
A ∈ CN1×N1 and the matrix B ∈ CN1×N2 . The LDLH decomposition of
A can be computed using N3

1−N1
3 complex multiplications. The matrix

A−1B can be computed using N2
1N2 complex multiplications and N1

complex divisions if the LDLH decomposition of A is known.

Proof. Efficient algorithms for computing the LDLH decomposition are
reviewed in [155, 183], and the number of multiplications can be found
in [155, Table I]. Note that A−1B can be computed by solving N2
linear systems of equations. If the LDLH decomposition is known, it
can be exploited to solve the systems of equations by forward-backward
substitution, as described in [67, Appendix C.2], which requires N2

1
multiplications per system. N1 additional divisions are required to
compute D−1.

B.1.2 Matrix Identities

The following identity is key to manipulating matrix inverses.
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Lemma B.3 (Matrix inversion lemma). Consider the matrices A ∈
CN1×N1 , B ∈ CN1×N2 , C ∈ CN2×N2 , and D ∈ CN2×N1 . The follow-
ing identity holds if all the involved inverses exist:

(A + BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1. (B.1)

By utilizing Lemma B.3, we can obtain the following identity for
rank-one perturbations of an inverse.

Lemma B.4. Consider the invertible Hermitian matrix A ∈ CN×N and
some vector x ∈ CN . It holds that

(A + xxH)−1 = A−1 − 1
1 + xHA−1xA−1xxHA−1 (B.2)

(A + xxH)−1x = 1
1 + xHA−1xA−1x. (B.3)

Proof. The identity in (B.2) follows from Lemma B.3 with B = x,
C = 1, and D = xH. We obtain (B.3) from (B.2) by multiplying with x
from the right and then simplifying the expression.

The following identities are commonly used for matrix manipulation.

Lemma B.5. For matrices A ∈ CN1×N2 and B ∈ CN2×N1 , it holds that

(IN1 + AB)−1 A = A (IN2 + BA)−1 (B.4)
tr (AB) = tr (BA) . (B.5)

The first identity is used to prove the following result.

Lemma B.6. Let A ∈ CN×N and B ∈ CN×N be two positive semi-
definite Hermitian matrices that satisfy BA = 0N×N . It then holds
that

(IN + A + B)−1 A = (IN + A)−1 A. (B.6)
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Proof. The left-hand side of (B.6) can be rewritten as

(IN + A + B)−1 A
= (IN + A + B)−1 A (IN + A) (IN + A)−1

(a)= (IN + A + B)−1 (IN + A) A (IN + A)−1

(b)= (IN + A + B)−1 (IN + A + B) A (IN + A)−1

= A (IN + A)−1

(c)= (IN + A)−1 A (B.7)

where (a) exploits the fact that the matrices (IN + A) and A commute
and (b) utilizes the assumption that BA = 0N×N to add this term to
the expressions. Lastly, (c) utilizes the matrix identity in (B.4).

The following matrix identities are commonly used for lower/upper
bounding of matrix expressions.

Lemma B.7. Consider an arbitrary matrix A ∈ CN×N and a positive
semi-definite matrix B ∈ CN×N . It holds that

|tr (AB)| ≤ ‖A‖2tr(B). (B.8)

If A is a positive semi-definite matrix, it further holds that

tr (AB) ≤ ‖A‖2tr(B). (B.9)

Proof. Let σi(·) denote the ith decreasingly ordered singular value of
a matrix. It generally holds that |tr (AB)| ≤ ∑N

i=1 σi(A)σi(B). Since
σi(A) ≤ σ1(A) = ‖A‖2, we further have |tr (AB)| ≤ ‖A‖2

∑N
i=1 σi(B) =

‖A‖2tr(B) since B is a positive semi-definite matrix and thus the sin-
gular values are also the eigenvalues. When A is positive semi-definite,
(B.9) follows from (B.8) since |tr (AB)| = tr (AB).

Lemma B.8. Consider the positive definite matrix A ∈ CN×N and the
positive semi-definite matrix B ∈ CN×N . It holds that

tr
(
A−1B

)
≥ 1
‖A‖2

tr(B). (B.10)
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Proof. Let C = A−1, which is a positive definite matrix with strictly
positive eigenvalues. The left hand side of (B.10) can be rewritten as

tr (CB) = tr (λmin(C)INB) + tr ((C− λmin(C)IN )B)

≥ λmin(C)tr (B) = 1
‖C−1‖2

tr(B)
(B.11)

where λmin(C) > 0 denotes the smallest eigenvalue of C. The inequality
follows from the fact that C − λmin(C)IN and B are positive semi-
definite matrices, thus tr((C−λmin(C)IN )B) ≥ 0. Finally, we note that
the smallest eigenvalue of C equals the largest eigenvalue of C−1 = A,
which is equivalent to ‖A‖2.

Lemma B.9 (Cauchy-Schwarz inequality). Consider the vectors a ∈ CN

and b ∈ CN . It holds that

|aHb|2 ≤ ‖a‖2 ‖b‖2 (B.12)

with equality if and only if a and b are linearly dependent.

Lemma B.10 (Generalized Rayleigh quotient). Consider the fixed vector
a ∈ CN and the Hermitian positive definite matrix B ∈ CN×N . It then
holds that

max
v∈CN

|vHa|2
vHBv = aHB−1a (B.13)

where the maximum is attained by v = B−1a.

Proof. The matrix square root C = B 1
2 of B exists since B is positive

definite. We begin by making the change of variable v̄ = Cv, leading
to the equivalent optimization problem

max
v̄∈CN

|v̄H(C−1)Ha|2
‖v̄‖2 . (B.14)

Next, we note that |v̄H(C−1)Ha|2 ≤ ‖v̄‖2‖(C−1)Ha‖2 according to the
Cauchy-Schwarz inequality (see Lemma B.9) with equality if and only if
v̄ and (C−1)Ha are equal up to a scalar factor. By inserting this achiev-
able upper bound in (B.14), we get the maximum value as ‖(C−1)Ha‖2 =
aHB−1a. We note that the scaling of v̄ does not affect the result, thus
we can set v̄ = (C−1)Ha which leads to v = C−1(C−1)Ha = B−1a.
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B.2 Random Vectors and Matrices

This section provides some standard results that are useful when ma-
nipulating random scalars, vectors, and matrices.

Definition B.1 (Complex Gaussian random variable). An N -dimensional
circularly symmetric complex Gaussian random vector x with mean
value µ ∈ CN and the positive definite covariance matrix R ∈ CN×N

has the PDF
f(x) = e−(x−µ)HR−1(x−µ)

πN det(R) . (B.15)

This is denoted as x ∼ NC(µ,R). The circular symmetry implies that
x− µ and ejφ(x− µ) are identically distributed for any given φ.1

If the covariance matrix R has rank r < N , then x ∼ NC(µ,R)
instead means that

x = µ+ UD 1
2

[
g

0N−r

]
(B.16)

where g ∼ NC(0r, Ir) has the PDF e−‖g‖
2

πr and R = UDUH is the
eigenvalue decomposition, with the diagonal matrix D containing the
eigenvalues in decaying order.

If N = 1 and the mean value is zero, then x ∼ NC(0, q) has the
PDF

f(x) = e−|x|
2/q

πq
. (B.17)

Lemma B.11 (Jensen’s inequality). Consider a scalar real-valued in-
tegrable2 random variable x and a scalar function g(·). It holds that

g(E{x}) ≤ E{g(x)} (B.18)
if the function is convex and

g(E{x}) ≥ E{g(x)} (B.19)

if the function is concave. Equality holds in (B.18) and (B.19) if and
only if x is either deterministic or g(·) is a linear function.

1Strictly speaking, only a random variable with zero mean can be circularly
symmetric, but we consider the extension of this notion as defined in this sentence.

2More precisely, the expectation E{g(x)} must be finite.
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The following is a special case of the strong law of large numbers.

Lemma B.12. Let x1, . . . , xM be a sequence of non-negative i.i.d. ran-
dom scalars with E{xm} = a and E{x4

m} <∞, then

1
M

M∑

m=1
xm → a (B.20)

almost surely as M →∞.

Proof. This is a special case of [93, Theorem 3.4].

The following trace lemma is also a consequence of the strong law
of large numbers.

Lemma B.13. Let R1,R2, . . . be a sequence of matrices, with RM ∈
CM×M , that satisfies lim supM‖RM‖2 <∞. Let x1,x2, . . . be a sequence
of random vectors with xM ∼ NC(0M , IM ). It holds that

1
M

xH
MRMxM −

1
M

tr(RM )→ 0 (B.21)

almost surely as M →∞.

Proof. This is a special case of [93, Theorem 3.4] where we limit the
scope to complex Gaussian vectors.

Lemma B.14. Consider the vector a ∼ NC(0N ,A), with covariance
matrix A ∈ CN×N , and any diagonalizable matrix B ∈ CN×N . It holds
that

E{|aHBa|2} = |tr(BA)|2 + tr(BABHA). (B.22)

Proof. Note that a = A 1
2 w for w ∼ NC(0N , IN ), thus we can write

E{|aHBa|2} = E{|wH(AH)
1
2 BA 1

2 w|2}. (B.23)

Next, let UΛUH = (AH) 1
2 BA 1

2 denote an eigenvalue decomposition
with Λ = diag(λ1, . . . , λN ) and define w̄ = [w̄1 . . . w̄N ]T = UHw ∼
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NC(0N , IN ). It then follows that

E{|wH(AH)
1
2 BA 1

2 w|2} = E{|w̄HΛw̄|2}

= E





∣∣∣∣∣
N∑

n=1
|w̄n|2λn

∣∣∣∣∣

2
 =

N∑

n1=1

N∑

n2=1
E{|w̄n1 |2|w̄n2 |2}λn1λ

?
n2

(a)=
N∑

n1=1

N∑

n2=1
n2 6=n1

λn1λ
?
n2 +

N∑

n1=1
2|λn1 |2

=
N∑

n1=1
λn1

N∑

n2=1
λ?n2 +

N∑

n1=1
|λn1 |2

(b)= |tr(Λ)|2 + tr(ΛΛH)
= |tr((AH)

1
2 BA 1

2 )|2 + tr((AH)
1
2 BA 1

2 (AH)
1
2 BHA 1

2 )
= |tr(BA)|2 + tr(BABHA) (B.24)

where (a) utilizes the independence between the elements of w̄ and also
the moments E{|w̄n|2} = 1 and E{|w̄n|4} = 2. In (b), we write the sum
of the eigenvalues as the trace and then we reintroduce the unitary
matrices from the eigenvalue decomposition. The final equality follows
from the fact that tr(C1C2) = tr(C2C1) for any matrices C1,C2 such
that C1 and CT

2 have the same dimensions.

Lemma B.15. Consider the random vectors a ∼ NC(0Na , µaINa) and
b ∼ NC(0Nb , µbINb) with µa 6= µb. The scalar

y = ‖a‖2 + ‖b‖2 (B.25)

has the PDF

f(x) =
Na∑

m=1

xNa−me−
x
µa (−1)m+1(Nb+m−2

m−1
)

µNaa µNbb (Na −m)!
(

1
µb
− 1

µa

)Nb+m−1

+
Nb∑

m=1

xNb−me
− x
µb (−1)m+1(Na+m−2

m−1
)

µNaa µNbb (Nb −m)!
(

1
µa
− 1

µb

)Na+m−1 (B.26)
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for x ≥ 0 and f(x) = 0 for x < 0. Moreover, it holds that

E
{

log2
(
1 + ‖a‖2 + ‖b‖2

)}

=
Na∑

m=1

Na−m∑

l=0

(Nb+m−2
m−1

)
(−1)Na−l+1

(
1
µb
− 1

µa

)Nb+m−1

(
e

1
µaE1

(
1
µa

)
+

l∑
n=1

1
n

n−1∑
j=0

1
j!µja

)

(Na −m− l)!µNa−l−1
a µNbb loge(2)

+
Nb∑

m=1

Nb−m∑

l=0

(Na+m−2
m−1

)
(−1)Nb−l+1

(
1
µa
− 1

µb

)Na+m−1

(
e

1
µbE1

(
1
µb

)
+

l∑
n=1

1
n

n−1∑
j=0

1
j!µj

b

)

(Nb −m− l)!µNaa µNb−l−1
b loge(2)

.

(B.27)

Proof. The squared absolute value of a NC(0, v)-distributed random
variable has the exponential distribution Exp(1/v), thus ‖a‖2 is the
sum of Na independent Exp(1/µa)-distributed random variables. Simi-
larly, ‖b‖2 is the sum of Nb independent Exp(1/µb)-distributed random
variables. When µa 6= µb, the PDF f(x) in (B.26) is obtained from the
general PDF formula derived in [13].

The expectation in (B.27) is computed by expanding it as

E
{

log2
(
1 + ‖a‖2 + ‖b‖2

)}
=
∫ ∞

0
log2(1 + x)f(x)dx

=
Na∑

m=1

∫∞
0 log2(1 + x)xNa−me−

x
µa dx (−1)m+1(Nb+m−2

m−1
)

µNaa µNbb (Na −m)!
(

1
µb
− 1

µa

)Nb+m−1

+
Nb∑

m=1

∫∞
0 log2(1 + x)xNb−me−

x
µb dx (−1)m+1(Na+m−2

m−1
)

µNaa µNbb (Nb −m)!
(

1
µa
− 1

µb

)Na+m−1

(B.28)

and the final expression is obtained by using the integral identity
∫ ∞

0
log2(1 + x)xN−me−

x
µdx

=
N−m∑

l=0

(N −m)!
(N −m− l)!

µl+1(−1)N−m−l
loge(2)


e

1
µE1

( 1
µ

)
+

l∑

n=1

1
n

n−1∑

j=0

1
j!µj




(B.29)

from [55, Theorem 2] to compute the remaining expectations.
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B.3 Properties of the Lambert W Function

The Lambert W function appears frequently in EE analysis and is
defined as follows.

Definition B.2. The Lambert W function is denoted by W (x) and
defined by the equation x = W (x)eW (x) for any x ∈ R with e being
Euler’s number.

The function can be lower and upper bounded as follows.

Lemma B.16. The LambertW functionW (x) is an increasing function
for x ≥ 0 and satisfies the inequalities

e
x

loge(x) ≤ e
W (x)+1 ≤ (1 + e) x

loge(x) for x ≥ e (B.30)

with e being Euler’s number.

The above lemma follows from the results and inequalities in [146]
and implies that eW (x)+1 is approximately equal to e for small x (i.e.,
when loge(x) ≈ x) whereas it increases almost linearly with x when x
is large (i.e., when loge(x) is almost constant).

B.4 Basic Estimation Theory

This section provides some basic results on the estimation of unknown
variables that are utilized in this monograph. We refer to textbooks
such as [175] for further details and explanations.

The purpose of estimation is to obtain an approximate value of an
unknown variable based on measurements. We are particularly interested
in Bayesian estimation where the unknown variable is a realization of
a random variable having a known, or partially known, statistical
distribution. We have the following basic definition.

Definition B.3 (Bayesian estimator). Consider a random variable x ∈
CN with support in X and let x̂(y) denote an arbitrary estimator of x
based on the observation y ∈ CT . For a given loss function `(·, ·), the
estimator that minimizes the expected loss

E {` (x, x̂(y))} (B.31)
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is called a Bayesian estimator.

There are many potential loss functions, but the squared difference is
of particular interest in this monograph since its expectation corresponds
to the estimation error variance.

Definition B.4 (Minimum mean-squared error estimator). The MMSE
estimator is given by the loss function `(x, x̂(y)) = ‖x − x̂(y)‖2 and
thus minimizes the MSE

E
{
‖x− x̂(y)‖2

}
. (B.32)

It is further computed as

x̂MMSE(y) = E{x|y} =
∫

X
xf(x|y)dx (B.33)

where f(x|y) is the conditional PDF of x given the observation y.

The MMSE estimator of a complex Gaussian random variable from
an observation that is corrupted by independent additive complex Gaus-
sian noise (and interference) is of particular interest in this monograph.

Lemma B.17. Consider estimation of the N -dimensional vector x ∼
NC(x̄,R), from the observation y = Ax + n ∈ CL. The covariance
matrix R is positive definite, A ∈ CL×N is a known matrix, and
n ∼ NC(n̄,S) is an L-dimensional independent noise/interference vector
with a positive definite covariance matrix.

The MMSE estimator of x based on y is

x̂MMSE(y) = x̄ + RAH(ARAH + S)−1(y−Ax̄− n̄). (B.34)

The error covariance matrix CMMSE = E{(x− x̂MMSE)(x− x̂MMSE)H}
is

CMMSE = R −RAH(ARAH + S)−1AR (B.35)

and the MSE, MSE = E{‖x− x̂MMSE‖2}, is

MSE = tr
(
R −RAH(ARAH + S)−1AR

)
. (B.36)
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Proof. We begin by computing the conditional PDF f(x|y). To this
end, we notice that

f(x) = e−(x−x̄)HR−1(x−x̄)

πN det(R) (B.37)

f(y) = e−(y−Ax̄−n̄)H(ARAH+S)−1(y−Ax̄−n̄)

πL det(ARAH + S) (B.38)

f(y|x) = e−(y−Ax−n̄)HS−1(y−Ax−n̄)

πL det(S) (B.39)

are the PDF of x, the PDF of y, and the conditional PDF of y given x,
respectively. Using Bayes’ formula, we can compute f(x|y) as

f(x|y) = f(y|x)f(x)
f(y) =

e−(y−Ax−n̄)HS−1(y−Ax−n̄)

πL det(S)
e−(x−x̄)HR−1(x−x̄)

πN det(R)
e−(y−Ax̄−n̄)H(ARAH+S)−1(y−Ax̄−n̄)

πL det(ARAH+S)

= e−(x−m)H(R−1+AHS−1A)(x−m)

πN det ((R−1 + AHS−1A)−1)

where

m = x̄ + (R−1 + AHS−1A)−1AHS−1(y−Ax̄− n̄)
= x̄ + RAH(ARAH + S)−1(y−Ax̄− n̄)

(B.40)

after some straightforward algebra (including the use of Lemma B.3). We
identify f(x|y) as a circularly symmetric complex Gaussian distribution
with mean value m and covariance matrix (R−1 + AHS−1A)−1. By
definition, the MMSE estimator is x̂MMSE(y) = E{x|y} = m and the
estimation error covariance matrix is

CMMSE = (R−1 +AHS−1A)−1 = R−RAH(ARAH +S)−1AR (B.41)

where the second equality follows from Lemma B.3. Finally, we notice
that the MSE is tr(CMMSE).

The MMSE estimator can be applied even when the covariance
matrix of the unknown variable is rank-deficient, as shown by the next
corollary. For brevity, we only consider zero-mean variables, because
that is the focus of this monograph.
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Corollary B.18. Consider estimation of the N -dimensional vector x ∼
NC(0N ,R), with a positive semi-definite covariance/correlation matrix
R, from the observation y = xq + n ∈ CN . The pilot signal q ∈ C is
known and n ∼ NC(0N ,S) is an independent noise/interference vector
with a positive definite covariance/correlation matrix.

The MMSE estimator of x is

x̂MMSE(y) = q?R
(
|q|2R + S

)−1
y. (B.42)

The estimation error correlation matrix is

CMMSE = R − |q|2R
(
|q|2R + S

)−1
R (B.43)

and the MSE is

MSE = tr
(

R − |q|2R
(
|q|2R + S

)−1
R
)
. (B.44)

Proof. Similar to Remark 2.2 on p. 224, we let R = UDUH, where
D ∈ Rr×r is a diagonal matrix containing the r = rank(R) positive
non-zero eigenvalues of R and U ∈ CN×r consists of the associated
eigenvectors. Using this notation, we can express x = Ug where g ∼
NC(0r,D) and notice that y = Ugq + n. Since g is the variable to be
estimated and it has a full-rank correlation/covariance matrix D, we
can apply Lemma B.34 with g as the unknown variable, Uq as the
known matrix A, and n as the noise/interference vector. It then follows
that

E{x|y} = UE{g|y}
= q?UDUH(|q|2UDUH + S)−1y
= q?R(|q|2R + S)−1y (B.45)

which yields the estimator in (B.42). The estimation error correlation
matrix and the MSE can be obtained accordingly.

In many cases with non-Gaussian unknown variables, the MMSE
estimator is hard to compute, either because of analytical intractability
or since the full statistical characterization of the unknown variable
cannot be obtained in practice. Linear Bayesian estimators are then
useful because only the mean value and covariance matrix of the variable
are needed.
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Definition B.5 (Linear minimum mean-squared error estimator). The
LMMSE estimator is the Bayesian estimator that minimizes the MSE

E
{
‖x− x̂(y)‖2

}
(B.46)

under the additional constraint that the estimator is a linear (or affine)
function of the observation. More precisely,

x̂LMMSE(y) = Ay + b (B.47)

where A and b are selected jointly to minimize the MSE.

The LMMSE estimator can be computed in closed form.

Lemma B.19. Consider estimation of the vector x from the observation
y. The LMMSE estimator is

x̂LMMSE(y) = E{x}+ CxyC−1
yy(y− E{y}) (B.48)

if Cyy is invertible, and achieves the MSE tr(CLMMSE), where the
estimation error covariance matrix CLMMSE is

CLMMSE = Cxx −CxyC−1
yyCH

xy (B.49)

and

Cxy = E {(x− E{x})(y− E{y})H} (B.50)
Cxx = E {(x− E{x})(x− E{x})H} (B.51)
Cyy = E {(y− E{y})(y− E{y})H} . (B.52)

Proof. The LMMSE estimator has the form x̂LMMSE(y) = Ay + b by
definition and minimizes

E
{
‖x−Ay− b‖2

}
= tr

(
E {(x−Ay− b)(xH − yHAH − bH)} )

= tr
(
E {(x−Ay)(xH − yHAH)} )

+ tr
(
bbH − E{x}bH − bE{xH}+ AE{y}bH + bE{yH}AH

)

= E
{
‖(x− E{x})−A(y− E{y})‖2

}
+ ‖b− E{x}+ AE{y}‖2

(B.53)
where the last equality follows from completing the squares and then
doing some algebra. Note that b only appears in (B.53) as ‖b−E{x}+
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AE{y}‖2, which implies that (B.53) is minimized by bmin = E{x} −
AE{y}. By substituting this value back into (B.53), we obtain

E
{
‖(x− E{x})−A(y− E{y})‖2

}

= tr (Cxx −ACyx −CxyAH + ACyyAH)
= tr

(
(ACyy −Cxy)C−1

yy(ACyy −Cxy)H
)

+ tr (Cxx)− tr
(
CxyC−1

yyCH
xy
)

(B.54)

where the last equality follows from completing the squares and exploit-
ing the fact that Cyx = CH

xy. The expression in (B.54) is minimized by
Amin = CxyC−1

yy . The final estimator expression in (B.48) is obtained
by using Amin and bmin. Substituting Amin back into (B.54) gives the
MSE and error covariance matrix.

Notice that the LMMSE estimator in Lemma B.19 depends on
the first-order moments (E{x}, E{y}) and the second-order moments
(Cxx, Cyy, Cxy) of the unknown variable x and the observation y.
However, the exact distributions of these random variables are not
needed. This makes the LMMSE estimator particularly suitable for
practical implementations, where these moments can be estimated
relatively easily, while the full PDF is very hard to estimate since it may
not follow any known distribution. Note that the MMSE estimator of
a Gaussian random variable that is observed in independent Gaussian
noise, which was considered in Lemma B.17, is a linear estimator and
thus equals the LMMSE estimator; in other words, there exist no better
non-linear Bayesian estimators in this special case.

B.5 Basic Information Theory

This section provides some basic information-theoretic definitions and
results that are used in this monograph. We refer to textbooks such as
[94] for further details and explanations.

The classic channel capacity result in Theorem 1.1 on p. 167 considers
a discrete memoryless channel, where one input symbol is sent at a
time and each output symbol only depends on the current input. These
concepts are defined as follows.
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Definition B.6 (Discrete channel). A discrete channel is a channel where
one input symbol x is sent to receive one output symbol y. The channel
is characterized by an input alphabet X , an output alphabet Y, and
the transition PDF f(y|x) for all y ∈ Y and x ∈ X .

We can now define a memoryless channel as a collection of indepen-
dent discrete channels.

Definition B.7 (Discrete memoryless channel). A discrete memoryless
channel is a collection ofN discrete channels, having input xn and output
yn for n = 1, . . . , N , with joint transition PDF f(y1, . . . , yN |x1, . . . , xN )
satisfying

f(y1, . . . , yN |x1, . . . , xN ) =
N∏

n=1
f(yn|xn). (B.55)

If f(yn|xn) is the same for all n, we drop the index n for brevity and
let the notation x, y, and f(y|x) be used for an arbitrary instance of
the channel.

Next, we define the entropy of a continuous random variable.

Definition B.8 (Differential entropy). The differential entropy of a con-
tinuous random variable y with support in Y and PDF f(y) is

H(y) = −
∫

Y
log2

(
f(y)

)
f(y)dy. (B.56)

If the random variable x, with support in X and PDF f(x), is given and
the conditional PDF is f(y|x), then the conditional differential entropy
is

H(y|x) = −
∫

Y

∫

X
log2

(
f(y|x)

)
f(y|x)f(x)dxdy. (B.57)

The differential entropy H(y) measures the surprisal when observing
a realization of the random variable y, which can be interpreted as
the amount of information that the variable conveys. The differential
entropy can take any value from −∞ to +∞, where a larger value implies
larger surprisal. Similarly, H(y|x) measures the amount of additional
information that we obtain by observing y, if we already know x.
It holds that H(y) ≥ H(y|x) since observing x cannot increase the
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surprisal when we later observe y, but it can potentially reduce the
surprisal. The difference I(x; y) = H(x)−H(x|y) quantifies the mutual
information of x and y. The differential entropy of a zero-mean circularly
symmetric complex Gaussian variable is of particular importance in
this monograph.

Lemma B.20. The differential entropy of x ∼ NC(0, q) is

H(x) = log2(eπq). (B.58)

Proof. The PDF f(x) of x is given in (B.17) and has support in C.
According to the definition of differential entropy, we have

H(x) = −
∫

C
log2

(
e−|x|

2/q

πq

)
e−|x|

2/q

πq
dx

= log2(e)
q

∫

C
|x|2 e

−|x|2/q

πq
dx

︸ ︷︷ ︸
=q

+ log2(πq)
∫

C

e−|x|
2/q

πq
dx

︸ ︷︷ ︸
=1

= log2(eπq) (B.59)

by identifying the first integral on the second line as being the definition
of the variance of x ∼ NC(0, q) and the second integral as being the
total probability.

A deterministic variable has −∞ as differential entropy, while the
next lemma proves that Gaussian random variables have the highest
differential entropy among all variables with a given power.

Lemma B.21. Consider any continuous random variable z ∈ C with
E{|z|2} = q. The differential entropy of z is upper bounded as

H(z) ≤ log2(eπq) (B.60)

with equality if and only if z ∼ NC(0, q).

Proof. Denote the PDF of z as g(z) and consider x ∼ NC(0, q) with
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the PDF f(x). Notice that

H(z)−H(x) =
∫

C
log2

(
f(x)

)
f(x)dx−

∫

C
log2

(
g(z)

)
g(z)dz

(a)=
∫

C
log2

(
f(x)

)
g(x)dx−

∫

C
log2

(
g(z)

)
g(z)dz

(b)=
∫

C
log2

(
f(z)
g(z)

)
g(z)dz

(c)
≤ log2

(∫

C

f(z)
g(z) g(z)dz

)
= log2(1) = 0 (B.61)

where (a) follows from the fact that

log2 (f(x)) = − log2(πq) + log2(e)
q
|x|2 (B.62)

and thus E{log2(f(x))} has the same value when taking the expectation
over any distribution of x having E{|x|2} = q, including the distribution
given by the PDF g(x). We obtain (b) by changing the name of the
integration variable from x to z in the first integral. Next, (c) follows from
applying Jensen’s inequality in Lemma B.11 to the concave logarithmic
function, which only gives equality if f(x) = g(x). Finally, (B.60) follows
from the expression for H(x) in Lemma B.20.

Motivated by this lemma, Gaussian distributed variables are of-
ten considered in communications, to convey a maximum amount of
information under a given power constraint.

B.6 Basic Optimization Theory

This section provides the basic terminology, definitions, and classification
of optimization problems. We refer to textbooks and survey articles
such as [34, 66, 67] for further details and explanations.

The main purpose of optimization is to analyze a set of feasible
solutions to a problem and determine which one that is most preferable,
in terms of maximizing a given utility function. Let us denote the
utility function as f0 : RV → R, then the optimization problem can be
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expressed as
maximize

x
f0(x)

subject to x ∈ X
(B.63)

where the V -dimensional vector x = [x1 x2 . . . xV ]T ∈ RV is called the
optimization variable. This variable can be selected from the feasible
set X of feasible solutions. It is usually assumed that X is a compact
set and that the utility function is continuously differentiable over
this set. A feasible vector xopt ∈ X is called an optimal solution to
(B.63) if it provides the largest utility among all feasible solutions; that
is, f0(xopt) ≥ f0(x) for all x ∈ X . The optimization problem (B.63)
is feasible if the feasible set is non-empty, otherwise it is said to be
infeasible.

To enable structured analysis and algorithmic development, it is
convenient to write an optimization problem on the standard form

maximize
x

f0(x)

subject to fn(x) ≤ 0 n = 1, . . . , N
(B.64)

where the N functions fn : RV → R are called the constraint func-
tions. Any (constrained) optimization problem can be reformulated on
the standard form [67], but the dimension of x might change in the
reformulation. For example, (B.64) is equivalent to (B.63) for

X =
{
x ∈ RV : fn(x) ≤ 0 n = 1, . . . , N

}
. (B.65)

The utility function and the constraint functions completely characterize
an optimization problem that is on the standard form. It might not be
necessary to solve (B.64) from scratch, but there are important classes
of problems for which there are general-purpose algorithms that solve
any instance of the class. The following are important classes in wireless
communications:

• Linear program: f0 and f1, . . . , fN are linear or affine functions.
Note that a function fn : RV → R is affine if for any x1,x2 ∈ RV

and t ∈ [0, 1], fn(tx1 + (1− t)x2) = tfn(x1) + (1− t)fn(x2).
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• Geometric program: −f0 and f1−1, . . . , fN−1 are posynomial
functions. Note that a function fn : RV+ → R is posynomial if it can
be expressed as fn(x) = ∑B

b=1 cbx
e1,b
1 x

e2,b
2 · · ·xeV,bV for some positive

integer B, constants cb > 0, and exponents e1,b, . . . , eV,b ∈ R for
b = 1, . . . , B, where x = [x1 x2 . . . xV ]T is a vector with non-
negative elements.

• Convex program: −f0 and f1, . . . , fN are convex functions.
Note that a function fn : RV → R is convex if for any x1,x2 ∈ RV

and t ∈ [0, 1], fn(tx1 + (1− t)x2) ≤ tfn(x1) + (1− t)fn(x2).

These three classes represent successively more general conditions:
every linear program is also convex and every geometric program can
be transformed into a convex program by a standard change of variable.
More precisely, for the optimization variable x = [x1 x2 . . . xV ]T we can
make the change of variable xv = ex̄v for v = 1, . . . , V , which turns an
arbitrary posynomial constraint ∑B

b=1 cbx
e1,b
1 x

e2,b
2 · · ·xeV,bV ≤ 1 into

B∑

b=1
cbe

x̄1e1,b+x̄2e2,b+...+x̄V eV,b ≤ 1

loge

(
B∑

b=1
cbe

x̄1e1,b+x̄2e2,b+...+x̄V eV,b

)
≤ 0 (B.66)

where the latter can be shown to be a convex constraint.
If the utility function is a constant or, equivalently, if there is no

utility function at all, then the optimization problem is called a feasibility
problem. The purpose of solving a feasibility problem is to find any
point in the feasible set X , which can be a far from trivial task.

Practical optimization problems can be difficult to classify and refor-
mulation tricks are sometimes needed to reveal that a given optimization
problem belongs to one of the three above-mentioned classes. There is
no systematic way of identifying and extracting an underlying structure,
but it is rather an art that includes making good changes of variables
and relaxations [251]. A survey of reformulation tricks that are relevant
to resource allocation in wireless communications is provided in [46].

Most optimization problems have no closed-form optimal solutions,
but can still be solved numerically to any accuracy ε > 0 on the optimal



578 Standard Results

value f0(xopt). The problem classification enables the use of numerical
algorithms developed for that particular class. For example, interior-
point methods can be applied to linear, geometric, and convex programs
with a polynomial worst-case complexity (under some mild conditions
[67]). General-purpose implementations of interior-point methods are
available in SeDuMi [307], SDPT3 [316], and MOSEK [22]. The use of
these implementations can be simplified by the high-level modeling
frameworks CVX [132] and Yalmip [196]. Hence, for the purpose of this
monograph, we will only classify optimization problems into one of the
categories listed above and then we consider the solution to have been
obtained. We used CVX and MOSEK when writing this monograph.

It is important to differentiate between the globally optimal point
xopt (that maximizes the utility for all x ∈ X ) and locally optimal
points that provide the highest utility among the feasible points in their
surroundings. Formally, a point x̄ is locally optimal if there exist ε > 0
such that f0(x̄) ≥ f0(x) for all x ∈ X satisfying ‖x̄− x‖2 < ε.

As noted in [278], there is a great watershed between convex and non-
convex programs; every locally optimal solution to a convex program is
also globally optimal, while this is not the case for general non-convex
programs [67]. Therefore, the entire feasible set X basically needs to
be searched when solving non-convex programs, which corresponds to
a complexity that grows exponentially (or faster) with the number of
optimization variables and/or constraints. Practical algorithms for non-
convex programs are often designed to only search for locally optimal
points, which might be achieved with manageable complexity using
sequential convex approximations [206]. In case the globally optimal
solution is needed, there are also algorithms that can find it. Many
non-convex programs in the area of wireless communications belong
to the alternative class of monotonic programs [46] and can be solved
by the polyblock outer approximation algorithm [317] or the branch-
reduce-and-bound algorithm [318]. These algorithms are guaranteed
to find the globally optimal solution but have exponential worst-case
complexity with respect to the number of optimization variables, thus
they are mainly useful for small problems.



C
Collection of Proofs

C.1 Proofs in Section 1

C.1.1 Proof of Corollary 1.2

Consider the case when h is deterministic and known at the output of
the channel. In the capacity expression (1.2), the conditional entropy
becomes H(y|x) = H(n) since only the additive noise is unknown at
the output. From Lemma B.20 on p. 574, we have

H(n) = log2(eπσ2). (C.1)

To compute H(y) and take the supremum, we notice that the power of
the output signal is E{|y|2} = |h|2E{|x|2}+ E{|n|2} ≤ |h|2p+ σ2, with
equality for any input distribution f(x) that satisfies E{|x|2} = p. From
Lemma B.21 on p. 574, we know that the entropy of a random variable
with a given power is maximized when that variable has a circularly
symmetric complex Gaussian distribution with as large variance as
possible. This is achieved for y by selecting x ∼ NC(0, p). For this
entropy-maximizing input distribution, we have

H(y) = log2
(
eπE{|y|2}

)
= log2

(
eπ(|h|2p+ σ2)

)
(C.2)

579
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which yields

C = log2
(
eπ(|h|2p+ σ2)

)
− log2(eπσ2) = log2

(
1 + p|h|2

σ2

)
. (C.3)

This corresponds to (1.4) and finishes the proof for the case when h is
deterministic. In the case when h is a realization of the independent
random variable H, the output of the channel is (y,H) and thus the
general capacity expression in (1.2) becomes

sup
f(x)

(H(y,H)−H(y,H|x)) = sup
f(x)

(E {H(y,H = h)−H(y,H = h|x)})

(C.4)
where the equality follows from conditioning on an arbitrary realization
h of H and taking the expected value with respect to this realization.
The expression inside the expectation considers a deterministic value of
h and can thus be computed and maximized with respect to x as done
earlier in this proof. Since the same input distribution x ∼ NC(0, p) is
optimal irrespective of the realization of h, the capacity expression in
(C.4) becomes (1.5).

C.1.2 Proof of Corollary 1.3

To prove this result, we consider the following equivalent way of ex-
pressing the channel capacity [297]:

C = sup
f(x)

(H(x)−H(x|y)
)
. (C.5)

We begin by considering the case when h and pυ are deterministic. A
lower bound on the capacity in (C.5) is computed by making three
suboptimal assumptions. The first assumption is x ∼ NC(0, p), which
might not be the optimal input distribution and gives the lower bound

C ≥ H(x)−H(x|y) (C.6)

where H(x) = log2(eπp) for the input distribution (see Lemma B.20
on p. 572). It remains to compute the conditional differential entropy
H(x|y). The second suboptimal assumption is that the input x is esti-
mated from y using an LMMSE estimator as described in Lemma B.19
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on p. 571:
x̂ = E{xy?}

E{|y|2}y (C.7)

where
E{xy?} = E{xx?h?}+ E{xυ?}+ E{xn?} = ph? (C.8)

since the noise and input are independent (and have zero mean) and
because E{xυ?} = 0 by assumption. Moreover,

E{|y|2} = p|h|2 + pυ + σ2 (C.9)

by also utilizing the independence between the noise and the interference,
and the assumption E{υ} = 0. Note that all expectations are with
respect to x, υ, and n. The MSE of the LMMSE estimator is

MSEx = E{|x|2} − |E{xy
?}|2

E{|y|2} = p− p2|h|2
p|h|2 + pυ + σ2 . (C.10)

This is exploited to upper bound the conditional differential entropy as

H(x|y) (a)= H(x− x̂|y)
(b)
≤ H(x− x̂)

(c)
≤ log2(eπMSEx) (C.11)

where (a) follows from subtracting the known LMMSE estimate (which
is a constant when y is known and thus does not change the entropy [94])
and (b) follows from removing the remaining information in y (which
does not reduce the entropy). The random variable x− x̂ has zero mean
and variance MSEx, thus (c) follows from Lemma B.21 on p. 574, which
says that the largest entropy is achieved when the random variable is
complex Gaussian distributed. This is this is the third suboptimal step.

In summary, we have the lower bound

C ≥ log2(eπp)− log2(eπMSEx) = − log2

(
1− p|h|2

p|h|2 + pυ + σ2

)

= log2

(
p|h|2 + pυ + σ2

pυ + σ2

)
= log2

(
1 + p|h|2

pυ + σ2

)
(C.12)

which is the expression in (1.9).
Suppose h is instead a realization of the random variable H and the

conditional interference variance pυ(h, u) depends on a realization u of
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the random variable U. It is assumed that H and U are known at the
output, which means that (y,H,U) is the output of the channel. The
capacity C can then be lower bounded as

C ≥ H(x)−H(x|y,H,U)
= log2(eπp)− E {H(x|y,H = h,U = u)} (C.13)

by first assuming the input distribution x ∼ NC(0, p) and then condi-
tioning on particular realizations of H and U. The expectation in (C.13)
is with respect to the realizations h and u. The conditional expression
inside the expectation considers given realizations h and u, respectively,
thus we can apply the same bounding technique as (C.7)–(C.9), by let-
ting all expectations be conditioned on h, u. The derivation then requires
conditionally independent noise, E{υ|h, u} = 0, and E{x?υ|h, u} = 0.
Using the notation pυ(h, u) = E{|υ|2|h, u} of the conditional variance,
the final expression in (1.10) follows accordingly.

C.1.3 Proof of Lemma 1.4

This lemma considers a special case of the channel in Corollary 1.3
on p. 171 with h = h0

0 and υ = √ph0
1. Since the LoS channels are

deterministic, an achievable SE is obtained directly from (1.9) and
becomes

SELoS
0 = log2

(
1 + pβ0

0
pβ0

1 + σ2

)
. (C.14)

This turns into the SE expression in (1.17) by using the SNR definition
in (1.13) and the definition of β̄ in (1.12).

The NLoS channels are random and thus an achievable SE is instead
obtained by (1.10) in Corollary 1.3 with H = h0

0, U = h0
1, and pυ =

p|h0
i |2:

E
{

log2

(
1 + p|h0

0|2
p|h0

1|2 + σ2

)}
. (C.15)

This expectation is further divided as

E
{

log2

(
1 +

1∑

i=0

p|h0
i |2
σ2

)}
− E

{
log2

(
1 + p|h0

1|2
σ2

)}
(C.16)
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and both expectations need to be computed with respect to the random
channel responses. Next, we will use the identity

E
{

log2

(
1 +

L∑

i=1
|bi|2

)}
=

L∑

i=1

e
1
µiE1

(
1
µi

)

loge(2)
L∏
l=1
l 6=i

(1− µl
µi

)
(C.17)

for independent variables bi ∼ NC(0, µi) with distinct values of µi,
for i = 1, . . . , L, from [61, Lemma 3]. By setting µ1 = SNR0β̄ and
µ2 = SNR0, we can compute the two terms in (C.16) as

E
{

log2

(
1 +

1∑

i=0

p|h0
i |2
σ2

)}
=
e

1
SNR0β̄E1

(
1

SNR0β̄

)

loge(2)
(
1− β̄−1

) +
e

1
SNR0E1

(
1

SNR0

)

loge(2)
(
1− β̄

)

(C.18)

E
{

log2

(
1 + p|h0

1|2
σ2

)}
=
e

1
SNR0β̄E1

(
1

SNR0β̄

)

loge(2) . (C.19)

By inserting (C.18) and (C.19) into (C.16), we obtain the SE expression
in (1.18). Since the identity from [61, Lemma 3] only holds in the case
when µ1 and µ2 are different, we need to exclude the case β̄ = 1 from
this lemma.

C.1.4 Proof of Lemma 1.5

The MR processed received signal vH
0y0 in (1.25) is a scalar channel

of the same type as (1.14), thus the SE expressions are obtained by
the same methodology as in the proof of Lemma 1.4. The details are
provided below.

In the deterministic LoS case, the SE expression

log2

(
1 + p‖h0

0‖4
p|(h0

0)Hh0
1|2 + σ2‖h0

0‖2

)
= log2


1 + p‖h0

0‖2

p
|(h0

0)Hh0
1|2

‖h0
0‖2

+ σ2




(C.20)
is obtained from Corollary 1.3. We observe that ‖h0

0‖2 = β0
0M since each

element of the channel response in (1.23) has the squared magnitude
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β0
0 . Moreover, we notice that

(h0
0)Hh0

1 =
√
β0

0β
0
1

M−1∑

m=0

(
e2πjdH(sin(ϕ0

1)−sin(ϕ0
0))
)m

=





√
β0

0β
0
1

1−e2πjdHM(sin(ϕ0
1)−sin(ϕ0

0))

1−e2πjdH(sin(ϕ0
1)−sin(ϕ0

0)) if sin(ϕ0
0) 6= sin(ϕ0

1)
√
β0

0β
0
1M if sin(ϕ0

0) = sin(ϕ0
1)
(C.21)

where the first equality uses the LoS definition in (1.23) and the second
equality utilizes the geometric series formula ∑M−1

m=0 x
m = 1−xM

1−x for
x 6= 1 and ∑M−1

m=0 x
m = M for x = 1. By further utilizing the fact that

∣∣∣∣∣
1− e2πjdHM(sin(ϕ0

1)−sin(ϕ0
0))

1− e2πjdH(sin(ϕ0
1)−sin(ϕ0

0))

∣∣∣∣∣

2

=
∣∣∣∣∣
eπjdHM(sin(ϕ0

1)−sin(ϕ0
0))

eπjdH(sin(ϕ0
1)−sin(ϕ0

0))
sin
(
πdHM(sin(ϕ0

1)− sin(ϕ0
0))
)

sin
(
πdH(sin(ϕ0

1)− sin(ϕ0
0))
)
∣∣∣∣∣

2

=
sin2 (πdHM(sin(ϕ0

1)− sin(ϕ0
0))
)

sin2 (πdH(sin(ϕ0
1)− sin(ϕ0

0))
) (C.22)

by Euler’s formulas, we notice that

|(h0
0)Hh0

1|2
‖h0

0‖2
= β0

1 g
(
ϕ0

0, ϕ
0
1
)

(C.23)

where the function g(·, ·) is defined in (1.28) and ‖h0
0‖2 = β0

0M . Inserting
this expression into (C.20) and dividing all terms in the SINR by pβ0

0 ,
the SE expression in (1.27) is obtained.

For the random NLoS channels, Corollary 1.3 provides the SE
expression

E
{

log2

(
1 + p‖h0

0‖4
p|(h0

0)Hh0
1|2 + σ2‖h0

0‖2

)}

= E





log2


1 + p‖h0

0‖2

p
|(h0

0)Hh0
1|2

‖h0
0‖2

+ σ2








(C.24)
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which is further separated into two expectations as

E



log2


1 + p

σ2 ‖h
0
0‖2 + p

σ2

∣∣∣∣∣
(h0

0)H

‖h0
0‖

h0
1

∣∣∣∣∣

2






− E



log2


1 + p

σ2

∣∣∣∣∣
(h0

0)H

‖h0
0‖

h0
1

∣∣∣∣∣

2




 . (C.25)

Next, we note that
√
p

σ2
(h0

0)H

‖h0
0‖

h0
1 ∼ NC

(
0,SNR0β̄

)
(C.26)

since h0
0/‖h0

0‖ is uniformly distributed over the unit sphere in CM and
thereby merely projects the M -variate random variable

√
p/σ2h0

1 ∼
NC(0M ,SNR0β̄IM ) to a single-variate random variable with the same
variance and distribution. The second expectation in (C.25) can thus
be computed by using the identity in (C.17) from [61, Lemma 3]:

E



log2


1 + p

σ2

∣∣∣∣∣
(h0

0)H

‖h0
0‖

h0
1

∣∣∣∣∣

2




 =

e
1

SNR0β̄E1
(

1
SNR0β̄

)

loge(2) . (C.27)

Next, we utilize the fact that y = p
σ2 ‖h0

0‖2 + p
σ2

∣∣∣ (h
0
0)H

‖h0
0‖

h0
1

∣∣∣
2
is the sum of

independent exponentially distributed random variables: M variables
with variance SNR0 from the first term and one variable with variance
SNR0β̄ from the second term. The first expectation in (C.25) is then
obtained by using Lemma B.15 on p. 565 for the case of Na = M ,
µa = SNR0, Nb = 1, and µb = SNR0β̄:

E



log2


1 + p

σ2 ‖h
0
0‖2 + p

σ2

∣∣∣∣∣
(h0

0)H

‖h0
0‖

h0
1

∣∣∣∣∣

2






=
M∑

m=1

M−m∑

l=0

(−1)M−l+1
(

1
SNR0β̄

− 1
SNR0

)m

(
e

1
SNR0E1

(
1

SNR0

)
+

l∑
n=1

1
n

n−1∑
j=0

1
j!SNRj0

)

(M −m− l)! SNRM−l0 β̄ loge(2)

+ 1
(

1
SNR0

− 1
SNR0β̄

)M
e

1
SNR0β̄E1

(
1

SNR0β̄

)

SNRM0 loge(2)
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=
M∑

m=1

M−m∑

l=0

(−1)M−m−l+1
(
1− 1

β̄

)m

(
e

1
SNR0E1

(
1

SNR0

)
+

l∑
n=1

1
n

n−1∑
j=0

1
j!SNRj0

)

(M −m− l)! SNRM−m−l0 β̄ loge(2)

+ 1
(
1− 1

β̄

)M
e

1
SNR0β̄E1

(
1

SNR0β̄

)

loge(2) . (C.28)

Substituting (C.27) and (C.28) into (C.25) yields the SE expression in
(1.29).

C.1.5 Proof of Corollary 1.6

The lower bound in (1.32) is obtained by applying Jensen’s inequality
(see Lemma B.11 on p. 563) to the convex function log2(1 + 1/x) as

E
{

log2

(
1 + p‖h0

0‖4
p|(h0

0)Hh0
1|2 + σ2‖h0

0‖2

)}

= E





log2


1 + p‖h0

0‖2

p
|(h0

0)Hh0
1|2

‖h0
0‖2

+ σ2








≥ log2


1 +


E





p
|(h0

0)Hh0
1|2

‖h0
0‖2

+ σ2

p‖h0
0‖2








−1


= log2


1 +

(
pβ0

1 + σ2

p(M − 1)β0
0

)−1

 (C.29)

where x =
p
|(h0

0)Hh0
1|

2

‖h0
0‖

2 +σ2

p‖h0
0‖2

. The last equality follows from the facts that
|(h0

0)Hh0
1|2

‖h0
0‖2

is independent of h0
0, has mean value β0

1 , and that

E
{ 1
‖h0

0‖2
}

= 1
(M − 1)β0

0
(C.30)

since 2
β0

0
‖h0

0‖2 ∼ χ2(2M) and thus the expectation in (C.30) can be
computed from standard results of the inverse-χ2 distribution; see [315,
Lemma 2.10].
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C.1.6 Proof of Lemma 1.7

The MR processed received signal vH
0ky0 in (1.40) for UE k is a scalar

channel of the same type as (1.14), thus achievable SE expressions
of this UE can be obtained from Corollary 1.3 on p. 171 (using the
same methodology as in the proof of Lemma 1.4). The sum SE is the
summation over the K UEs’ SEs. The details are provided below.

In the deterministic LoS case, the SE expression from Corollary 1.3
becomes

log2




1 + p‖h0
0k‖2

K∑
i=1
i 6=k

p
|(h0

0k)Hh0
0i|2

‖h0
0k‖2

+
K∑
i=1

p
|(h0

0k)Hh0
1i|2

‖h0
0k‖2

+ σ2




(C.31)

for UE k by dividing each term in the SINR by ‖h0
0k‖2. We notice that

‖h0
0k‖2 = β0

0M since each element of the channel response in (1.38) has
squared magnitude β0

0 . Moreover, one can prove that
∣∣∣(h0

0k)Hh0
ji

∣∣∣
2

‖h0
0k‖2

= β0
j g
(
ϕ0

0k, ϕ
0
ji

)
(C.32)

for j = 0, 1 and i = 1, . . . ,K, by following the same approach as in the
proof of Lemma 1.5. By summing up (C.31) for all UEs in the cell, we
arrive at (1.43).

For NLoS channels, the channels are random and thus Corollary 1.3
(with H = ‖h0

0k‖2 and U containing |(h0
0k)Hh0

ji|2 for all j, i) provides the
achievable SE

E





log2




1 + p‖h0
0k‖2

K∑
i=1
i6=k

p
|(h0

0k)Hh0
0i|2

‖h0
0k‖2

+
K∑
i=1

p
|(h0

0k)Hh0
1i|2

‖h0
0k‖2

+ σ2








(C.33)

for UE k by dividing each term in the SINR by ‖h0
0k‖2. We begin by

computing the expectation of the inverse of the SINR in (C.33), which
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is

E





K∑
i=1, i 6=k

p
|(h0

0k)Hh0
0i|2

‖h0
0k‖2

+
K∑
i=1

p
|(h0

0k)Hh0
1i|2

‖h0
0k‖2

+ σ2

p‖h0
0k‖2





= p(K − 1)β0
0 + pKβ0

1 + σ2

p(M − 1)β0
0

=
(K − 1) +Kβ̄ + 1

SNR0

M − 1 (C.34)

by utilizing the facts that |(h
0
0k)Hh0

ji|2
‖h0

0k‖2
is independent of h0

0k, has mean
value β0

j (whenever (j, i) 6= (0, k)), and

E
{

1
‖h0

0k‖2

}
= 1

(M − 1)β0
0

(C.35)

since 2
β0

0
‖h0

0k‖2 ∼ χ2(2M) and thus the expectation in (C.35) can be
computed from standard results of the inverse-χ2 distribution; see [315,
Lemma 2.10].

We now utilize (C.34) to compute the lower bound in (1.44) by
applying Jensen’s inequality (Lemma B.11 on p. 563) to (C.33) as

K∑

k=1
E





log2




1 + p‖h0
0k‖2

K∑
i=1, i 6=k

p
|(h0

0k)Hh0
0i|2

‖h0
0k‖2

+
K∑
i=1

p
|(h0

0k)Hh0
1i|2

‖h0
0k‖2

+ σ2








≥
K∑

k=1
log2


1 +

(
(K − 1) +Kβ̄ + 1

SNR0

M − 1

)−1
 (C.36)

where we utilized the convexity of log2(1+1/x) with respect to x (which
is the inverse SINR in this case). The expression in (1.44) follows from
(C.36) by noting that the SE bound is the same for all K UEs.

C.1.7 Proof of Lemma 1.8

The transmit precoding reduces the MISO channels to the effective
scalar channel in (1.45). This channel is of the same type as (1.14), thus
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the SE expressions are obtained by the same methodology as in the
proof of Lemma 1.4 and Lemma 1.7. The details are provided below.

In the deterministic LoS case, the SE expression

SELoS
0 =

K∑

k=1
log2




1 +
p

∣∣∣∣(h0
0k)H h0

0k
‖h0

0k‖

∣∣∣∣
2

K∑
i=1
i 6=k

p

∣∣∣∣(h0
0k)H h0

0i
‖h0

0i‖

∣∣∣∣
2

+
K∑
i=1

p

∣∣∣∣(h1
0k)H h1

1i
‖h1

1i‖

∣∣∣∣
2

+ σ2



.

(C.37)

is obtained from Corollary 1.3 on p. 171 with h = ‖h0
0k‖ and υ being the

sum of all interference terms. The expression in (1.49) is then obtained
by utilizing the facts that ‖h0

0k‖2 = β0
0M and |(hj0k)Hhjji|2/‖hjji‖2 =

βj0g(ϕjji, ϕ
j
0k) for j = 0, 1.

The NLoS channels are random and in this case an achievable SE
is instead obtained by (1.5) in Corollary 1.3 (with H = ‖h0

0k‖ and U

containing |(h
j
0k)Hhjji|2
‖hjji‖2

for all j, i):

SENLoS
0 =

K∑

k=1
E





log2




1 +
p

∣∣∣∣(h0
0k)H h0

0k
‖h0

0k‖

∣∣∣∣
2

K∑
i=1
i 6=k

p

∣∣∣∣(h0
0k)H h0

0i
‖h0

0i‖

∣∣∣∣
2

+
K∑
i=1

p

∣∣∣∣(h1
0k)H h1

1i
‖h1

1i‖

∣∣∣∣
2

+ σ2








.

(C.38)

We begin by computing the expectation of the inverse of the SINR in
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(C.38), which is

E





∑K
i=1,i 6=k p

∣∣∣∣(h0
0k)H h0

0i
‖h0

0i‖

∣∣∣∣
2

+
K∑
i=1

p

∣∣∣∣(h1
0k)H h1

1i
‖h1

1i‖

∣∣∣∣
2

+ σ2

p‖h0
0k‖2





=
K∑

i=1,i 6=k
E





∣∣∣∣∣
(h0

0k)H

‖h0
0k‖

h0
0i

‖h0
0i‖

∣∣∣∣∣

2




+




K∑

i=1
E





∣∣∣∣∣
(h1

0k)Hh1
1i

‖h1
1i‖

∣∣∣∣∣

2


+ σ2

p


E

{
1

‖h0
0k‖2

}

= K − 1
M

+
Kβ1

0 + σ2

p

(M − 1)β0
0

(C.39)

where the first expectation is computed by utilizing the fact that∣∣(h0
0k)Hh0

0i
∣∣2 /(‖h0

0k‖2‖h0
0i‖2) is beta-distributed with parameters 1 and

M [162], which implies that the expectation is 1/M . The second expec-
tation follows from the fact that (h1

0k)Hh1
1i

‖h1
1i‖

∼ NC(0, β1
0) and the third

expectation follows from (C.35).
By applying Jensen’s inequality (Lemma B.11 on p. 563) in the

same way as in (C.36), we obtain that (C.37) is lower bounded by

K∑

k=1
log2


1 +


K − 1

M
+
Kβ1

0 + σ2

p

(M − 1)β0
0



−1



= K log2

(
1 + (M − 1)

(K − 1)M−1
M +Kβ̄ + 1

SNR0

)
. (C.40)

This is the final expression provided in (1.50).
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C.2 Proofs in Section 3

C.2.1 Proof of Theorem 3.1 and Corollary 3.2

The received pilot signal in (3.1) can be separated into two terms:

Yp
j = Yp

j

(
1
τp
φ?liφ

T
li

)
+ Yp

j

(
Iτp −

1
τp
φ?liφ

T
li

)
. (C.41)

The first part is the orthogonal projection onto the subspace spanned
by pilot sequence of UE i in cell l and the second part is the projection
onto the orthogonal complement. By utilizing the assumption of a pilot
book with orthogonal sequences, the first term in (C.41) becomes

Yp
j

(
1
τp
φ?liφ

T
li

)
= 1
τp


 ∑

(l′,i′)∈Pli

√
pl′i′τphjl′i′ + Np

jφ
?
li


φT

li

= 1
τp

ypjliφ
T
li (C.42)

and second term becomes

Yp
j

(
Iτp −

1
τp
φ?liφ

T
li

)

=
∑

(l′,i′) 6∈Pli

√
pl′i′hjl′i′φ

T
l′i′ + Np

j

(
Iτp −

1
τp
φ?liφ

T
li

)
. (C.43)

These terms are independent random variables, since they involve
disjoint subsets of the UEs’ channels and orthogonal projections of
the noise matrix. Since only the first term is dependent on hjli, we can
use [175, Theorem 5.1] to conclude that 1

τp
ypjliφ

T
li is a sufficient statistic

for estimating hjli. Furthermore, ypjli and 1
τp

ypjliφ
T
li are related through

a deterministic and nondestructive transformation, making

ypjli = Yp
jφ

?
li = √pliτphjli

︸ ︷︷ ︸
Desired pilot

+
∑

(l′,i′)∈Pli\(l,i)

√
pl′i′τphjl′i′

︸ ︷︷ ︸
Interfering pilots

+ Np
jφ

?
li

︸ ︷︷ ︸
Noise

(C.44)

a sufficient statistic as well. Next, we notice that y = ypjli in (C.44)
matches the structure in Corollary B.18 on p. 570 with q = √pliτp,
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R = Rj
li, and S = ∑

(l′,i′)∈Pli\(l,i) pl′i′(τp)
2Rj

l′i′ + τpσ
2
ULIMj . The MMSE

estimator in (3.9) and the estimation error correlation/covariance matrix
in (3.11) then follow directly from Corollary B.18. The final expressions
given in Theorem 3.1 are obtained by dividing with τp at the inside and
in front of the matrix inverse.

Since ypjli is circularly symmetric complex Gaussian distributed with
zero mean and correlation matrix

E{ypjli(y
p
jli)

H} = τp


 ∑

(l′,i′)∈Pli
pl′i′τpRj

l′i′ + σ2
ULIMj


 (C.45)

it follows that also the estimate is zero-mean complex Gaussian dis-
tributed. The correlation matrix Rj

li −Cj
li, stated in Corollary 3.2, is

obtained from direct computation of E{ĥjli(ĥ
j
li)H} using (3.9) and (C.45).

Next, we utilize the fact that the MMSE estimate and the estimation
error are jointly Gaussian and uncorrelated, where the latter follows
from the orthogonality principle [175, Chapter 12], to conclude that the
estimate and the error are independent and jointly Gaussian distributed.
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C.3 Proofs in Section 4

C.3.1 Proof of Theorem 4.1

The received signal in (4.1) matches the discrete memoryless channel in
Corollary 1.3 on p. 171 with a random channel response h = vH

jkĥ
j
jk,

the input x = sjk, the output y = vH
jkyj , and u = {ĥjli} as the random

realization that affects the conditional variance of the interference. Using
the notation from Corollary 1.3, the noise term is zero (i.e., σ2 = 0)
since vH

jknj is not necessarily Gaussian distributed and depends on the
realization of vjk. The interference term in the corollary is

υ = vH
jkh̃

j
jksjk +

Kj∑

i=1
i6=k

vH
jkh

j
jisji +

L∑

l=1
l 6=j

Kl∑

i=1
vH
jkh

j
lisli + vH

jknj . (C.46)

The value of h and the (conditional) variance of υ are constant within
a coherence block, but fluctuates between coherence blocks. In particu-
lar, in a given coherence block, the receiving BS j knows the current
realization of the channel estimates ĥjli for all l and i: u = {ĥjli}. Note
that h is known at the BS since it depends only on ĥjli and vjk, where
the latter is a function of the channel estimates and thus of u. The
conditional variance of the zero-mean interfering signal υ is

pυ(h, u) = E
{
|υ|2

∣∣{ĥjli}
}

(a)= E{|sjk|2}E
{
|vH
jkh̃

j
jk|2

∣∣{ĥjli}
}

+
L∑

l=1

Kl∑

i=1
(l,i)6=(j,k)

E{|sli|2}E
{
|vH
jkh

j
li|2
∣∣{ĥjli}

}

+ E
{
|vH
jknj |2

∣∣{ĥjli}
}

(b)= pjkvH
jkC

j
jkvjk +

L∑

l=1

Kl∑

i=1
(l,i)6=(j,k)

plivH
jk

(
ĥjli(ĥ

j
li)

H + Cj
li

)
vjk

+ σ2
ULvH

jkIMjvjk

=
L∑

l=1

Kl∑

i=1
(l,i)6=(j,k)

pli|vH
jkĥ

j
li|2 + vH

jk




L∑

l=1

Kl∑

i=1
pliCj

li + σ2
ULIMj


vjk (C.47)
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where (a) follows from the independence between each of the zero-mean
signals sli and the independence between signals and channels. Next, (b)
follows from computing the powers of the signals E{|sli|2} = pli and from
utilizing the fact that E

{
|vH
jkh

j
li|2
∣∣{ĥjli}

}
= vH

jk

(
ĥjli(ĥ

j
li)H + Cj

li

)
vjk for

arbitrary values of l and i (since the estimation error is independent of
the channel estimate).

To utilize the capacity bound in Corollary 1.3, we also need to prove
that the interference term has conditionally zero mean, E {υ|h, u} = 0,
which is satisfied since the signals and the receiver noise are indepen-
dent of the realizations of the channel estimates and have zero mean.
The corollary also requires the interference term to be conditionally
uncorrelated with the input signal, E {x?υ|h, u} = 0, which is satisfied
since

E {x?υ|h, u} = E
{
x?υ

∣∣{ĥjli}
}

= E{vH
jkh̃

j
jk

∣∣{ĥjli}}E{|sjk|2} = 0
(C.48)

where the second equality exploits the fact that x = sjk is independent
of all terms in (C.46) except the first one and the third equality exploits
the fact that the estimation error h̃jjk is independent of the channel
estimates and has zero mean.

We have now proved that we can utilize Corollary 1.3 to lower bound
the capacity. The expression E{log2(1 + SINRUL

jk )} follows from (1.10)
by inserting the values of h and pυ(h, u) obtained above. As a last step,
we note that only the fraction τu/τc of the samples are used for UL
data transmission, which results in the lower bound on the capacity in
(4.2) measured in bit/s/Hz.

C.3.2 Proof of Corollary 4.2

The UL instantaneous SINR in (4.3) can be expressed as

SINRUL
jk =

|vH
jkajk|2

vH
jkBjkvjk

(C.49)
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for a fixed vector ajk = √pjkĥjjk and a fixed matrix

Bjk =
L∑

l=1

Kl∑

i=1
(l,i)6=(j,k)

pliĥjli(ĥ
j
li)

H +
L∑

l=1

Kl∑

i=1
pliCj

li + σ2
ULIMj . (C.50)

The maximization of the SINR is thus a generalized Rayleigh quotient
and is solved by Lemma B.10 on p. 562. The maximum SINR becomes
aH
jkB−1

jk ajk which gives (4.5). Furthermore, the lemma provides vjk =
B−1
jk ajk as one combining vector that attains the maximum. Note that

B−1
jk ajk = (1 + aH

jkB−1
jk ajk)(Bjk + ajkaH

jk)−1ajk (C.51)

by utilizing (B.3) in Lemma B.4 on p. 560. This vector is equivalent to
(4.4) except from having another scaling factor in front of the inverse.
Since the SINR expression in (4.3) does not change if we scale vjk by
any non-zero scalar, (4.4) also maximizes the instantaneous SINR.

C.3.3 Proof of Corollary 4.3

By direct computation of the conditional expectation in (4.6), we obtain
the MSE expression

E
{
|sjk − vH

jkyj |2
∣∣{ĥjli}

}

= pjk − pjkvH
jkĥ

j
jk − pjk(ĥ

j
jk)

Hvjk

+ vH
jk




L∑

l=1

Kl∑

i=1
pli
(
ĥjli(ĥ

j
li)

H + Cj
li

)
+ σ2

ULIMj


vjk. (C.52)

By introducing the notation

ajk = pjkĥjjk (C.53)

Bjk =
L∑

l=1

Kl∑

i=1
pli
(
ĥjli(ĥ

j
li)

H + Cj
li

)
+ σ2

ULIMj (C.54)

we can write the MSE in (C.52) as

pjk − vH
jkajk − aH

jkvjk + vH
jkBjkvjk

= pjk − aH
jkB−1

jk ajk +
(
vjk −B−1

jk ajk
)H

Bjk

(
vjk −B−1

jk ajk
)

(C.55)
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where the last term is non-negative since Bjk is a positive definite
matrix. The MSE is minimized with respect to vjk when the last term
is zero, which occurs when vjk = B−1

jk ajk. Finally, we note that this
vector is the same as the M-MMSE combining vector in (4.4).

C.3.4 Proof of Theorem 4.4

The received signal in (4.13) matches the discrete memoryless channel
in Corollary 1.3 on p. 171 with the deterministic channel response
h = E{vH

jkh
j
jk}, the input x = sjk, and the output y = vH

jkyj . Using
the notation from that corollary, the noise term is zero (i.e., σ2 = 0),
since the processed noise vH

jknj might not be Gaussian distributed, and
the interference term is

υ = (vH
jkh

j
jk − E{vH

jkh
j
jk})sjk +

Kj∑

i=1
i 6=k

vH
jkh

j
jisji +

L∑

l=1
l6=j

Kl∑

i=1
vH
jkh

j
lisli + vH

jknj

=
L∑

l=1

Kl∑

i=1
vH
jkh

j
lisli − E{vH

jkh
j
jk}sjk + vH

jknj . (C.56)

The interference term has zero mean, E{υ} = 0, and is uncorrelated
with the input since

E {x?υ} = E{vH
jkh

j
jk − E{vH

jkh
j
jk}}︸ ︷︷ ︸

=0

E{|sjk|2} = 0 (C.57)

which are two conditions for applying the capacity bound in Corol-
lary 1.3. The variance of the interference term is

pυ = E
{
|υ|2

}

=
L∑

l=1

Kl∑

i=1
E{|vH

jkh
j
li|2}E{|sli|2} − |E{vH

jkĥ
j
jk}|2E{|sjk|2}+ E{|vH

jknj |2}

=
L∑

l=1

Kl∑

i=1
pliE{|vH

jkh
j
li|2} − pjk|E{vH

jkĥ
j
jk}|2 + σ2

ULE{‖vH
jk‖2}

(C.58)
which follows from utilizing the independence between each of the zero-
mean signals sli and the independence between signals and channels.
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The lower capacity bound in (4.14) now follows from (1.9) by in-
serting the values of h and pυ. As a last step, we note that only the
fraction τu/τc of the samples are used for UL data transmission, which
results in the lower bound on the capacity that is stated in the theorem
in bit/s/Hz.

C.3.5 Proof of Corollary 4.5

The expectations are computed directly, using the properties of the
MMSE estimator. The expression in (4.15) is computed as

E{vH
jkh

j
jk} = E{(ĥjjk)Hhjjk}

(a)= E{(ĥjjk)Hĥjjk}
(b)= tr(E{ĥjjk(ĥ

j
jk)

H}) (c)= pjkτptr
(
Rj
jkΨ

j
jkR

j
jk

)
(C.59)

where (a) follows from hjjk = ĥjjk+h̃jjk and the fact that E{(ĥjjk)Hh̃jjk} =
0 since the estimate and the estimation error are independent and have
zero mean. Next, (b) follows from the matrix identity (B.5) in Lemma B.5
on p. 560 and (c) utilizes (3.14). The expression in (4.16) also becomes
pjkτptr(Rj

jkΨ
j
jkR

j
jk) since it is equal to the third expression in (C.59).

The interference term in (4.17) is computed differently depending
on whether or not (l, i) ∈ Pjk (i.e., if the UEs use the same or different
pilot sequences). In the case of (l, i) 6∈ Pjk, we have

E{|vH
jkh

j
li|2} = E{(ĥjjk)Hhjli(h

j
li)

Hĥjjk}
(a)= tr

(
E{hjli(h

j
li)

H}E{ĥjjk(ĥ
j
jk)

H}
)

(b)= pjkτptr
(
Rj
liR

j
jkΨ

j
jkR

j
jk

)
(C.60)

where (a) utilizes the matrix identity in (B.5) and the independence
between the channel and channel estimate (due to the use of different
pilots). The equality (b) follows from direct computation, using the
channel statistics and (3.14).

In the case of (l, i) ∈ Pjk, we have

E{|vH
jkh

j
li|2} = E{(ĥjjk)H(ĥjli + h̃jli)(ĥ

j
li + h̃jli)

Hĥjjk}
= E{(ĥjjk)Hĥjli(ĥ

j
li)

Hĥjjk}+ E{(ĥjjk)Hh̃jli(h̃
j
li)

Hĥjjk} (C.61)
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where the last equality follows from expanding the expression and
removing two cross-terms that are zero due to the independence and
zero mean of the estimate and the estimation error. When computing
first term in (C.61), we note that ĥjli = √pliRj

liΨ
j
jky

p
jjk and ĥjjk =

√
pjkRj

jkΨ
j
jky

p
jjk, where the processed received signal can be expressed

as
ypjjk ∼ NC

(
0Mj , τp(Ψ

j
jk)
−1
)
. (C.62)

Hence, the first term in (C.61) becomes

E{(ĥjjk)Hĥjli(ĥ
j
li)

Hĥjjk} = plipjkE{|(ypjjk)HΨj
jkR

j
liR

j
jkΨ

j
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p
jjk|2}
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∣∣∣tr
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Ψj
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j
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j
jkΨ

j
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j
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−1
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2

+ plipjk(τp)2tr
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Ψj
jkR

j
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j
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j
jk(Ψ

j
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−1Ψj

jkR
j
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j
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j
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j
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)

(b)= plipjk(τp)2
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Ψj
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j
liR

j
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)∣∣∣
2

+ plipjk(τp)2tr
(
Ψj
jkR

j
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j
jkΨ

j
jkR

j
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j
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)

(c)= plipjk(τp)2
∣∣∣tr
(
Rj
liΨ

j
jkR

j
jk
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2

+ pjkτptr
(
(Rj

li −Cj
li)R

j
jkΨ

j
jkR

j
jk

)

(C.63)

where (a) follows from Lemma B.14 on p. 564 with B = Ψj
jkR

j
liR

j
jkΨ

j
jk

and A = τp(Ψj
jk)−1.1 Multiplications of matrices and their inverses are

removed in (b) and finally we obtain (c) by noting that |tr(Ψj
jkR

j
liR

j
jk)| =

|tr(Rj
jkR

j
liΨ

j
jk)| = |tr(Rj

liΨ
j
jkR

j
jk)|, Rj

li − Cj
li = pliτpRj

liΨ
j
jkR

j
li, and

using the matrix identity in (B.5) to obtain that expression in second
trace.

The second term in (C.61) becomes

E{(ĥjjk)Hh̃jli(h̃
j
li)

Hĥjjk} = tr
(
E{h̃jli(h̃

j
li)

H}E{ĥjjk(ĥ
j
jk)

H}
)

= pjkτptr
(
Cj
liR

j
jkΨ

j
jkR

j
jk

)
(C.64)

where the first equality utilizes the matrix identity in (B.5) and the
independence between the estimate and estimation error, while the
second equality follows from direct computation of the expectations. By

1The absolute value in Lemma B.14 can be replaced with regular parentheses
since all matrices are positive semi-definite so the trace is positive and real-valued.
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substituting (C.63) and (C.64) into (C.61), we finally obtain

E{|vH
jkh

j
li|2}

= plipjk(τp)2
∣∣∣tr
(
Rj
liΨ

j
jkR

j
jk

)∣∣∣
2

+ pjkτptr
(
Rj
liR

j
jkΨ

j
jkR

j
jk

)
. (C.65)

The SE expression in (4.18) is obtained from (4.14) by inserting the
closed-form expressions that were computed above, and then dividing
the numerator and denominator by pjkτptr(Rj

jkΨ
j
jkR

j
jk).

In the special case of uncorrelated fading, we have

pjkτpΨj
jkR

j
jk =

pjkτpβ
j
jk∑

(l′,i′)∈Pjk pl′i′τpβ
j
l′i′ + σ2

UL
IMj (C.66)

and thus direct computation of the traces yields

p2
jkτptr

(
Rj
jkΨ

j
jkR

j
jk

)
= pjkβ

j
jkMj

pjkτpβ
j
jk∑

(l′,i′)∈Pjk pl′i′τpβ
j
l′i′ + σ2

UL
(C.67)

pli
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j
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j
jkR

j
jk

)

tr
(
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j
jkR

j
jk

) = pliβ
j
li (C.68)

p2
liτp

∣∣∣tr
(
Rj
liΨ

j
jkR

j
jk

)∣∣∣
2

tr
(
Rj
jkΨ

j
jkR

j
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) = pliβ
j
liMj

pliτpβ
j
li∑

(l′,i′)∈Pjk pl′i′τpβ
j
l′i′ + σ2

UL
.

(C.69)

The final expression in (4.19) is obtained by inserting (C.67)–(C.69)
into (4.18) and utilizing the definition of ψjk in (4.20).

C.3.6 Proof of Theorem 4.6

The received signal in (4.25) matches the discrete memoryless channel
in Corollary 1.3 on p. 171 with the deterministic channel response
h = E{(hjjk)Hwjk}, the input x = ςjk, and the output y = yjk. Using
the notation from that corollary, the noise term is n = njk ∼ NC(0, σ2

DL)
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and the interference term is

υ =
(
(hjjk)

Hwjk − E{(hjjk)Hwjk}
)
ςjk

+
Kj∑

i=1
i 6=k

(hjjk)
Hwjiςji +

L∑

l=1
l 6=j

Kl∑

i=1
(hljk)Hwliςli

=
L∑

l=1

Kl∑

i=1
(hljk)Hwliςli − E{(hjjk)Hwjk}ςjk. (C.70)

Note that the interference term has zero mean and is uncorrelated with
the input since

E {x?υ} = E{(hjjk)Hwjk − E{(hjjk)Hwjk}}︸ ︷︷ ︸
=0

E{|ςjk|2} = 0 (C.71)

which are two conditions for applying Corollary 1.3. Furthermore, the
variance of the interference term is

pυ = E
{
|υ|2

}

=
L∑

l=1

Kl∑

i=1
E{|(hljk)Hwli|2}E{|ςli|2} − |E{(hjjk)Hwjk}|2E{|ςjk|2}

=
L∑

l=1

Kl∑

i=1
ρliE{|wH

li(hljk)|2} − ρjk|E{(wH
jkh

j
jk)}|2 (C.72)

by utilizing the independence between each of the zero-mean signals ςli
and the independence between signals and channels.

The effective SINR expression in (4.26) now follows from (1.9) by
inserting the values of h and pυ. As a last step, we note that only the
fraction τd/τc of the samples are used for DL data transmission, which
results in the lower bound on the capacity stated in the theorem and
measured in bit/s/Hz.

C.3.7 Proof of Corollary 4.7

The proof consists of computing each of the expectations in (4.26) for
the case of wjk = ĥjjk/

√
E{‖ĥjjk‖2}.
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The signal term in the numerator of (4.26) is

|E{wH
jkh

j
jk}|2 =

|E{(ĥjjk)Hhjjk}|2

E{‖ĥjjk‖2}
(a)=
|E{(ĥjjk)Hĥjjk}|2

E{‖ĥjjk‖2}

= E{‖ĥjjk‖2}
(b)= pjkτptr

(
Rj
jkΨ

j
jkR

j
jk

)
(C.73)

where (a) follows from the independence between the channel estimate
and the estimation error and (b) follows from (C.59).

The expectation in the interference terms in the denominator of
(4.26) with indices that satisfy (l, i) 6∈ Pjk (i.e., the UEs use different
pilots) is computed as

E{|wH
lihljk|2} =

E{|(ĥlli)Hhljk|2}
E{‖ĥlli‖2}

(a)=
tr
(
Rl
jkRl

liΨl
liRl
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)

tr
(
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liΨl

liRl
li

) (C.74)

where (a) computes the expectations using (C.59) and (C.60), and then
removes their common scaling factor pliτp. Note that we need to swap
the indices (j, k) and (l, i) in both equations to obtain the desired result.
Similarly, in the case (l, i) ∈ Pjk (i.e., when the UEs use the same pilot)
the expectations in the interference terms are computed as

E{|wH
lihljk|2} =

E{|(ĥlli)Hhljk|2}
E{‖ĥlli‖2}

(a)=
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)
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) (C.75)

where (a) follows from (C.59) and (C.65) by swapping the indices (j, k)
and (l, i).

By substituting (C.73)–(C.75) into (4.26) and noting that
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) (C.76)
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we obtain the final expression for SINRDL
jk in (4.28).

The simplification for uncorrelated fading in (4.29) follows directly
from inserting the simplified expressions in (C.67)–(C.69) and utilizing
the definition of ψli in (4.20).

C.3.8 Proof of Theorem 4.8

Let γjk = SINRUL
jk denote the value of the effective SINR in (4.14) for

the given UL transmit power vector p and receive combining vectors
vjk, for j = 1, . . . , L and k = 1, . . . ,Kj . The goal of this proof is
to establish that γjk = SINRDL

jk is achievable in the DL when using
wjk = vjk/

√
E{‖vjk‖2} for all j and k. Substituting these precoding

vectors into (4.14), we obtain the SINR constraints

γjk =
ρjk
|E{vH

jkh
j
jk
}|2

E{‖vjk‖2}
L∑
l=1

Kl∑
i=1

ρli
E{|vH

li
hl
jk
|2}

E{‖vli‖2} − ρjk
|E{vH

jk
hj
jk
}|2

E{‖vjk‖2} + σ2
DL

(C.77)

for j = 1, . . . , L and k = 1, . . . ,Kj , which can be rewritten as

γjk
E{‖vjk‖2}
|E{vH

jkh
j
jk}|2

= ρjk
L∑
l=1

Kl∑
i=1

ρli
E{|vH

li
hl
jk
|2}

E{‖vli‖2} − ρjk
|E{vH

jk
hj
jk
}|2

E{‖vjk‖2} + σ2
DL

.

(C.78)

Using the matrices B and D, defined in Theorem 4.8, the constraints
in (C.78) can be expressed as

[Dj ]kk = ρjk
L∑
l=1

Kl∑
i=1

ρli[Bjl]ki + σ2
DL

(C.79)

for j = 1, . . . , L and k = 1, . . . ,Kj , from which we have that

σ2
DL = ρjk

[Dj ]kk
−

L∑

l=1

Kl∑

i=1
ρli[Bjl]ki. (C.80)

The Ktot constraints can be written in matrix form as

1Ktotσ
2
DL = D−1ρ−Bρ = (D−1 −B)ρ. (C.81)
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This is a linear system of equations, thus the DL transmit power vector
ρ = ρopt that satisfies all the SINR constraints is obtained as

ρopt = (D−1 −B)−11Ktotσ
2
DL. (C.82)

This is a feasible power vector with positive values if the inverse exists
and all elements of (D−1 − B)−1 are positive. To prove that this is
the case whenever p is feasible, we study the corresponding UL SINR
constraints γjk = SINRUL

jk :

γjk =
pjk
|E{vH

jkh
j
jk
}|2

E{‖vjk‖2}
L∑
l=1

Kl∑
i=1

pli
E{|vH

jk
hj
li
|2}

E{‖vjk‖2} − pjk
|E{vH

jk
hj
jk
}|2

E{‖vjk‖2} + σ2
UL

(C.83)

which can be rewritten as

[Dj ]kk = pjk
L∑
l=1

Kl∑
i=1

pli[Blj ]ik + σ2
UL

⇔ (C.84)

σ2
UL = pjk

[Dj ]kk
−

L∑

l=1

Kl∑

i=1
pli[Blj ]ik (C.85)

for j = 1, . . . , L and k = 1, . . . ,Kj . This can be expressed as the system
of equations 1Ktotσ

2
UL = D−1p−BTp = (D−1 −BT)p, where there is

a transpose on B since the indices of the interference term in (C.85)
are swapped as compared to (C.80). Clearly, we have p = (D−1 −
BT)−11Ktotσ

2
UL, which implies that the inverse exists and all elements

of (D−1 − BT)−1 are positive.2 This also implies that (D−1 − B) =
(D−1 −BT)T has strictly positive eigenvalues. Consequently, if p is a
feasible power vector the UL, then (C.82) is a feasible power vector for

2It is intuitive but not straightforward to prove that the elements are positive.
To see that this must be true, we note that σ = 1Ktotσ

2
UL is a vector with the noise

variances of all UEs. If we reduce the noise variance of some selected UEs, we increase
the corresponding SINRs (if the transmit power is fixed) and we should be able to
find a new feasible power vector that gives the same SINRs using less sum power.
However, if (D−1 −BT)−1 has negative elements we can find a positive noise vector
σ such that p = (D−1 −BT)−1σ has negative elements and thus is infeasible. This
is not reasonable, thus (D−1 −BT)−1 must have only positive elements. We refer to
[63, 260] for detailed methods to prove this result.
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the DL. This proves the main part of the theorem and (4.32) is obtained
by substituting 1Ktot = 1

σ2
UL

(D−1 −BT)p into (C.82).
The sum power condition in (4.33) follows from direct computation

and by utilizing 1T
Ktot(D

−1 −B)−11Ktot = 1T
Ktot(D

−1 −BT)−11Ktot .

C.3.9 Proof of Theorem 4.9

Let {ςjk} denote the set of the τd DL data signals transmitted to UE k in
cell j in a given coherence block and let {yjk} denote the corresponding
set of received signals at this UE. By assuming that ςjk ∼ NC(0, ρjk),
the DL capacity of this UE is lower bounded by

τd
τc

1
τd
I ({ςjk}; {yjk}) (C.86)

where τd/τc is the fraction of the coherence block used for DL data
transmission and I({ςjk}; {yjk})/τd is the mutual information per sam-
ple. Next, we use the chain rule of mutual information: I(X1, X2;Y ) =
I(X1;Y ) +I(X2;Y |X1) = I(X2;Y ) +I(X1;Y |X2) [94, Theorem 2.5.2].
We consider X1 = {ςjk}, Y = {yjk}, and we let X2 = {(hjjk)Hwji}
denote the set of precoded channels (hjjk)Hwji for i = 1, . . . ,Kj . From
the chain rule we then obtain

I (X1;Y ) = I(X2;Y ) + I(X1;Y |X2)− I(X2;Y |X1)
≥ I(X1;Y |X2)− I(X2;Y |X1) (C.87)

where the inequality follows from omitting the non-negative term
I(X2;Y ). The first term in (C.87) is the conditional mutual infor-
mation between the transmitted and received signals given the precoded
channels for the intra-cell signals:

I(X1;Y |X2) = I
(
{ςjk}; {yjk}|{(hjjk)Hwji}

)

≥ τdI
(
ςjk; yjk|{(hjjk)Hwji}

)

≥ τdE
{

log2
(
1 + SINRDL

jk

)}
(C.88)

where the first inequality follows from neglecting the mutual information
between different samples. The second inequality follows from applying
Corollary 1.3 on p. 171 with the input x = ςjk, the output y = yjk, the
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random channel response h = (hjjk)Hwjk, n = njk, and u = {(hjjk)Hwji}.
The interference term in the corollary is

υ =
Kj∑

i=1
i 6=k

(hjjk)
Hwjiςji +

L∑

l=1
l6=j

Kl∑

i=1
(hljk)Hwliςli. (C.89)

This term has conditional zero mean (since the data signals have zero
mean) and conditional variance

pυ(h, u) = E
{
|υ|2

∣∣{(hjjk)Hwji}
}

=
Kj∑

i=1
i6=k

ρji|wH
jih

j
jk|2 +

Kl∑

l=1
l 6=j

Kl∑

i=1
ρliE

{
|wH

lihljk|2
}

(C.90)

since we assumed that each BS computes its precoding vectors using only
its own channel estimates, which implies that the precoded channels
from other cells are independent of {(hjjk)Hwji}. The corollary also
requires the interference term to be conditionally uncorrelated with the
input signal, E {x?υ|h, u} = 0, which is satisfied since υ is independent
of x.

We also need to compute a bound on the second term in (C.87):

I(X2;Y |X1) = I
(
{(hjjk)Hwji}; {yjk}|{ςjk}

)

= H
(
{(hjjk)Hwji}|{ςjk}

)
−H

(
{(hjjk)Hwji}|{yjk}, {ςjk}

)

≤ H
(
{(hjjk)Hwji}|{ςjk},Ω

)
−H

(
{(hjjk)Hwji}|{yjk}, {ςjk},Ω

)

(C.91)

where the inequality follows from adding some side-information Ω that
is independent of {(hjjk)Hwji}, such that H

(
{(hjjk)Hwji}|{ςjk},Ω

)
=

H
(
{(hjjk)Hwji}|{ςjk}

)
, while the conditioning reduces the second differ-

ential entropy expression. In particular, we let Ω contain the transmitted
intra-cell signals {ςji} for i = 1, . . . ,Ki and the realizations of the inter-
cell interference {∑L

l=1,l 6=j
∑Kl
i=1(hljk)Hwliςli} for the τd samples used for

DL data transmission. Since the received signal and inter-cell interfer-
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ence are known, we can compute

y̌jk = yjk −
L∑

l=1,l 6=j

Kl∑

i=1
(hljk)Hwliςli =

Kj∑

i=1
(hjjk)

Hwjiςji + njk (C.92)

which only contains the intra-cell signals and noise. By utilizing this
notation, we have

H
(
{(hjjk)Hwji}|{yjk}, {ςjk},Ω

)
= H

(
{(hjjk)Hwji}|{y̌jk}, {ςjk},Ω

)
.

(C.93)
By substituting (C.93) into (C.91), we get

I(X2;Y |X1) ≤ I
(
{(hjjk)Hwji}; {y̌jk}|{ςjk},Ω

)

= I
(
{(hjjk)Hwji}; {y̌jk}|{ςj1}, . . . , {ςjKj}

)
(C.94)

where the equality follows from removing the conditioning on the inter-
cell interference terms in Ω, which are now independent of all other
variables in the expression.

Interestingly, (C.94) can be interpreted as the sum mutual informa-
tion of an uplink multiuser MIMO channel with transmitted signals
{(hjjk)Hwji} from Kj UEs, received signals {y̌jk} over τd antennas, and
known “channel coefficients” {ςj1}, . . . , {ςjKj}. In the mutual informa-
tion maximizing case, the UE channels are orthogonal and we obtain

I
(
{(hjjk)Hwji}; {y̌jk}|{ςj1}, . . . , {ςjKj}

)

≤
Kj∑

i=1
E



log2


1 +

∑τd
t=1 |ςjit|2V{(hjjk)Hwji}

σ2
DL





 (C.95)

where ςjit denotes the realization of ςji at the tth DL sample, for
t = 1, . . . , τd. Finally, we use Jensen’s inequality in Lemma B.11 on
p. 563 to obtain

Kj∑

i=1
E



log2


1 +

∑τd
t=1 |ςjit|2V{(hjjk)Hwji}

σ2
DL







≤
Kj∑

i=1
log2


1 +

ρjiτdV{(hjjk)Hwji}
σ2

DL


 (C.96)
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since E{|ςjit|2} = ρji.
By substituting (C.87) into (C.86) and utilizing the closed-form

bounds on the mutual information expressions that have been computed
above, we finally obtain (4.38).

C.3.10 Proof of Theorems 4.10 and 4.11

The expression for SINRUL
jk is given in (4.18). The proof begins by divid-

ing the numerator and denominator by Mj . The signal term becomes
p2
jkτp

Mj
tr(Rj

jkΨ
j
jkR

j
jk). This term is strictly positive as Mj →∞ due to

the first condition in Assumption 1 and is finite due to the second
condition. Each non-coherent interference term satisfies

pli
Mj

tr
(
Rj
liR

j
jkΨ

j
jkR

j
jk

)

tr
(
Rj
jkΨ

j
jkR

j
jk

) ≤ pli
Mj

‖Rj
li‖2tr

(
Rj
jkΨ

j
jkR

j
jk

)

tr
(
Rj
jkΨ

j
jkR

j
jk

) = pli
Mj
‖Rj

li‖2

(C.97)
where the inequality follows from Lemma B.7 on p. 561. These terms go
to zero as Mj →∞ due to the second condition in Assumption 1. The
noise term σ2

UL/Mj also goes asymptotically to zero. The remaining
coherent interference terms are bounded, since the trace expression in
the denominator scales as Mj and the traces in the numerator cannot
grow faster than Mj due to Assumption 1. Note that

1
Mj

∣∣∣tr(Rj
liΨ

j
jkR

j
jk)
∣∣∣ ≥ 1

Mj

tr(Rj
liΨ

j
jkR

j
jk) + tr(Rj

jkΨ
j
jkR

j
li)

2

= 1
Mj

tr
(
Ψj
jk(R

j
jkR

j
li + Rj

liR
j
jk)
)

2

≥ 1
‖(Ψj

jk)−1‖2
1
Mj

tr(Rj
liR

j
jk) (C.98)

by first removing the imaginary part and then applying Lemma B.8
on p. 561 with A = (Ψj

jk)−1 and B = (Rj
jkR

j
li + Rj

liR
j
jk). Note

that 1/‖(Ψj
jk)−1‖2 ≤ 1/σ2

UL < ∞ due to Assumption 1. Hence, if
1
Mj

tr(Rj
liR

j
jk) has a non-zero limit for some (l, i) ∈ Pjk \ (j, k), then the

coherent interference term approaches a finite non-zero limit. The dif-
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ference in (4.49) approaches zero asymptotically, since the non-coherent
interference terms and noise vanish.

However, if 1
Mj

tr(Rj
liR

j
jk) → 0 for all (l, i) ∈ Pjk \ (j, k), then we

can use Lemma B.7 to prove that
1
Mj

∣∣∣tr(Rj
liΨ

j
jkR

j
jk)
∣∣∣ ≤ 1

Mj
‖Ψj

jk‖2tr(Rj
liR

j
jk)→ 0 (C.99)

since the spectral norm of Ψj
jk is bounded according to the second

condition in Assumption 1. This happens exactly when Rj
jk is asymp-

totically spatially orthogonal to Rj
li for all (l, i) ∈ Pjk \ (j, k). Since all

the terms in the denominator approaches zero in this case, while the
numerator approaches a non-zero limit, we conclude that SINRUL

jk grows
without bound as Mj →∞. This finishes the proof for the UL.

In the DL, the expression for SINRDL
jk contains the same matrix

expressions as SINRUL
jk , except that the indices (l, i) and (j, k) are

swapped in the interference terms. If we divide the numerator and
denominator by M , then the signal term approaches a finite non-zero
limit, while the noise and non-coherent interference terms go to zero. By
a similar argument as in the UL, the coherent interference terms at UE k
in cell l approach a non-zero limit if tr(Rl

liRl
jk)/Mj has a non-zero limit

for at least one (l, i) ∈ Pjk \ (j, k). This makes the difference in (4.50) go
to zero asymptotically. If none of the coherent interference terms have a
non-zero limit, then SINRDL

jk grows without bound instead. This happens
when Rl

jk and Rl
li are spatially orthogonal for all (l, i) ∈ Pjk \ (j, k).
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C.4 Proofs in Section 5

C.4.1 Proof of Lemma 5.1

We begin by substituting pjk = P/M ε1 and ρjk = P/M ε2 into all
the terms in the deterministic expression for SINRDL

jk given in (5.4).
Multiplying and dividing the signal term in the numerator by M leads
to

PPτp
M ε1+ε2−1

1
M

tr
(
Rj
jkΨ

j
jkR

j
jk

)
(C.100)

with

Ψj
jk =


 ∑

(l′,i′)∈Pjk

P

M ε1
τpRj

l′i′ + σ2
ULIM



−1

. (C.101)

As M →∞, we have that Ψj
jk − 1/σ2

ULIM → 0M×M and consequently

1
M

tr
(
Rj
jkΨ

j
jkR

j
jk

)
− 1
σ2

UL

1
M

tr
(
Rj
jkR

j
jk

)
→ 0. (C.102)

Note that 1
M tr

(
Rj
jkR

j
jk

)
is strictly positive as M →∞ due to the first

condition in Assumption 1 on p. 337 and is also finite due to the second
condition. Therefore, as M → ∞, (C.100) goes to zero if ε1 + ε2 > 1,
while it grows without bound for ε1 + ε2 < 1.

By applying Lemma B.7 on p. 561 to each non-coherent interference
term in (5.4), it follows that

P

M ε2

tr
(
Rl
jkRl

liΨl
liRl

li

)

tr
(
Rl
liΨl

liRl
li

) ≤ P

M ε2

‖Rl
jk‖2tr

(
Rl
liΨl

liRl
li

)

tr
(
Rl
liΨl

liRl
li

)

= P

M ε2
‖Rl

jk‖2 (C.103)

and, hence, these terms go asymptotically to zero asM →∞, due to the
second condition in Assumption 1. The remaining coherent interference
terms can be written as

PPτp
M ε1+ε2−1

∣∣∣ 1
M tr

(
Rl
jkΨl

liRl
li

)∣∣∣
2

1
M tr

(
Rl
liΨl

liRl
li

) . (C.104)
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Similar to (C.102), as M →∞,
∣∣∣ 1
M tr

(
Rl
jkΨl

liRl
li

)∣∣∣
2

1
M tr

(
Rl
liΨl

liRl
li

) − 1
σ2

UL

(
1
M tr

(
Rl
jkRl

li

))2

1
M tr

(
Rl
liRl

li

) → 0 (C.105)

where all terms are bounded, since 1
M tr

(
Rl
liRl

li

)
and 1

M tr
(
Rl
jkRl

li

)
are

strictly positive and finite as M →∞, due to Assumption 1. Therefore,
as M →∞, (C.104) goes to zero if ε1 + ε2 > 1, while it grows without
bound for ε1 + ε2 < 1. Putting the above results together, Lemma 5.1
follows.

C.4.2 Proof of Equation (5.18)

To obtain (5.18), we begin by rewriting (5.17) as

2SE? (SE? loge(2)− 1) = M − 1
ν0

PFIX − 1 (C.106)

which can be transformed via the substitution x = SE? loge(2)− 1 into

xex = (M − 1)PFIX
ν0e

− 1
e
. (C.107)

The solution of the above equation takes the form

x? = W

((M − 1)PFIX
ν0e

− 1
e

)
. (C.108)

from which (5.18) easily follows since x? = SE? loge(2)− 1.

C.4.3 Proof of Corollary 5.2

Using the inequalities on the Lambert W function that are reported in
Lemma B.16 on p. 567, SE? and EE? can be lower bounded as

SE? ≥ 1
loge(2) loge




(M−1)PFIX
ν0e

− 1
e

loge
(

(M−1)PFIX
ν0e

− 1
e

)




= log2




(M−1)PFIX
ν0e

− 1
e

loge
(

(M−1)PFIX
ν0e

− 1
e

)


 (C.109)
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by using e x
loge(x) ≤ eW (x)+1 and

EE? ≥ (M − 1)B
ν0(1 + e) loge(2)

loge
(

(M−1)PFIX
ν0e

− 1
e

)

(M−1)PFIX
ν0e

− 1
e

= (M − 1)B
ν0(1 + e)

log2
(

(M−1)PFIX
ν0e

− 1
e

)

(M−1)PFIX
ν0e

− 1
e

(C.110)

by exploiting the fact that eW (x)+1 ≤ (1 + e) x
loge(x) . From the above

expressions, the approximations in (5.20) and (5.21) follow by assuming
that M and/or PFIX are large and neglecting small terms.

C.4.4 Proof of Corollary 5.3

The setup is the same as in the proof of Corollary 5.2, except that PFIX
is replaced by PFIX +MPBS. It then follows from (C.109) that

SE? ≥ log2




(M−1)(PFIX+MPBS)
ν0e

− 1
e

loge
(

(M−1)(PFIX+MPBS)
ν0e

− 1
e

)


 (C.111)

and from (C.110) that

EE? ≥ (M − 1)B
ν0(1 + e)

log2
(

(M−1)(PFIX+MPBS)
ν0e

− 1
e

)

(M−1)(PFIX+MPBS)
ν0e

− 1
e

(C.112)

The approximations in (5.24) and (5.25) follow by assuming that M ,
PFIX, and/or PBS are large and neglecting small terms.
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C.5 Proofs in Section 6

C.5.1 Proof of Theorem 6.1

We want to estimate hjli based on the observation

ypjli = Yp
jφ

?
li =

∑

(l′,i′)∈Pli

√
pl′i′κ

UE
t κBS

r τphjl′i′

+
L∑

l′=1

Kl′∑

i′=1

√
κBS
r hjl′i′

(
ηUE
l′i′
)T
φ?li +GBS

j φ
?
li + Np

jφ
?
li.

(C.113)
A general LMMSE estimator expression is provided by Lemma B.19
on p. 571. In our case, x = hjli and y = ypjli, and we notice that
E{x} = E{y} = 0Mj . Hence, the LMMSE estimator becomes

ĥjli = E{hjli(y
p
jli)

H}
(
E{ypjli(y

p
jli)

H}
)−1

ypjli. (C.114)

There are two expectations in (C.114) that need to be computed.
The first one is

E{hjli(y
p
jli)

H} =
∑

(l′,i′)∈Pli

√
pl′i′κ

UE
t κBS

r τpE{hjli(h
j
l′i′)

H}

+
L∑

l′=1

Kl′∑

i′=1

√
κBS
r E{hjli(h

j
l′i′)

H}E{φT
li

(
ηUE
l′i′
)?
}

︸ ︷︷ ︸
=0

+ E{hjliφT
li(GBS

j )H}+ E{hjli}︸ ︷︷ ︸
=0Mj

φT
li E{(Np

j )H}
︸ ︷︷ ︸

=0τp×Mj

=
√
pliκ

UE
t κBS

r τpRj
li (C.115)

where the last equality follows from the fact that E{hjli(h
j
l′i′)H} =

0Mj×Mj if (l, i) 6= (l′, i′) and from

E{hjliφT
li(GBS

j )H} = E
{
E{hjliφT

li(GBS
j )H

∣∣{h}}
︸ ︷︷ ︸

=0Mj×Mj

}
= 0Mj×Mj . (C.116)

Notice that we reached this result by conditioning on a set of channel
realizations {h}, to utilize that the conditional distribution of the distor-
tion term has zero mean. The same approach can be used to prove that
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the expectation of all cross-terms between hjli and the noise/distortion
terms are zero. This is utilized to compute the second expectation in
(C.114) as

E{ypjli(y
p
jli)

H} (a)=
∑

(l′,i′)∈Pli
pl′i′κ

UE
t κBS

r (τp)2E{hjl′i′(h
j
l′i′)

H}

+
L∑

l′=1

Kl′∑

i′=1
κBS
r E{hjl′i′(h

j
l′i′)

H}E
{∣∣∣
(
ηUE
l′i′
)T
φ?li

∣∣∣
2}

+ E{GBS
j φ

?
liφ

T
li(GBS

j )H}+ E{Np
jφ

?
liφ

T
li(N

p
j )H}

(b)=
∑

(l′,i′)∈Pli
pl′i′κ

UE
t κBS

r (τp)2Rj
l′i′ +

L∑

l′=1

Kl′∑

i′=1
κBS
r Rj

l′i′τp(1− κUE
t )pl′i′

+ τp(1− κBS
r )

L∑

l′=1

Kl′∑

i′=1
pl′i′DRj

l′i′
+ σ2

ULτpIMj (C.117)

where (a) follows from identifying the cross-terms that are zero and (b)
follows from direct computation of the expectations. The only compli-
cated computation is

E{GBS
j φ

?
liφ

T
li(GBS

j )H} = E
{
E{GBS

j φ
?
liφ

T
li(GBS

j )H
∣∣{h}}

}

= E{τpDj,{h}} = τp(1− κBS
r )

L∑

l′=1

Kl′∑

i′=1
pl′i′DRj

l′i′
(C.118)

where we condition on a set of channel realizations {h} to utilize
the conditional distribution GBS

j φ
?
jk|{h} ∼ NC(0Mj , τpDj,{h}) of the

receiver distortion term. We identify that Ψj
li = (E{ypjli(y

p
jli)H})−1τp and

thus the LMMSE estimator in (C.114) becomes (6.23) when inserting
(C.115) and (C.117). Finally, the estimation error correlation matrix is
obtained from Lemma B.19 as

Cj
li = E{hjli(h

j
li)

H} − E{hjli(y
p
jli)

H}
(
E{ypjli(y

p
jli)

H}
)−1(

E{hjli(y
p
jli)

H}
)H

(C.119)
which becomes (6.26) by inserting (C.115)–(C.117) and utilizing the
fact that E{hjli(h

j
li)H} = Rj

li.
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C.5.2 Proof of Theorem 6.2

The received signal in (6.32) matches the discrete memoryless channel
in Corollary 1.3 on p. 171 with the deterministic channel response
h =

√
κUE
t κBS

r E{vH
jkh

j
jk}, the input x = sjk, and the output y = vH

jkyj .
Using the notation from that corollary, the noise term is zero (i.e.,
σ2 = 0) since the processed noise term vH

jknj might not be Gaussian
distributed. The interference term is

υ =
√
κUE
t κBS

r

(
vH
jkh

j
jk − E{vH

jkh
j
jk}
)
sjk +

√
κBS
r vH

jkh
j
jkη

UE
jk

+
√
κBS
r

L∑

l=1

Kl∑

i=1
(l,i)6=(j,k)

vH
jkh

j
li

(√
κUE
t sli + ηUE

li

)
+ vH

jkη
BS
j + vH

jknj

=
√
κBS
r

L∑

l=1

Kl∑

i=1
vH
jkh

j
li

(√
κUE
t sli + ηUE

li

)
−
√
κUE
t κBS

r E{vH
jkh

j
jk}sjk

+ vH
jkη

BS
j + vH

jknj . (C.120)

Note that the interference term has zero mean and is uncorrelated with
the input since

E {x?υ} =
√
κUE
t κBS

r E{vH
jkh

j
jk − E{vH

jkh
j
jk}}︸ ︷︷ ︸

=0

E{|sjk|2} = 0 (C.121)

which are two of the conditions for applying the capacity bound in
Corollary 1.3. We further note that

pυ = E
{
|υ|2

}

= κBS
r

L∑

l=1

Kl∑

i=1
E{|vH

jkh
j
li|2}

(
κUE
t E{|sli|2}+ E{|ηUE

li |2}
)

− κUE
t κBS

r |E{vH
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j
jk}|2E{|sjk|2}+ E{|vH

jkη
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j |2}+ E{|vH

jknj |2}

= κBS
r

L∑

l=1

Kl∑

i=1
pliE{|vH
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j
li|2} − κUE

t κBS
r pjk|E{vH
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j
jk}|2

+ (1− κBS
r )
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l=1

Kl∑
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pliE{‖vjk � hjli‖2}+ σ2

ULE{‖vjk‖2}
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by utilizing the fact that the zero-mean signals sli, the channels, and the
transmitter distortion terms are all mutually independent. Moreover,
the receiver distortion term ηBS

j is uncorrelated with all the other terms,
which is easily proved by computing the conditional expectation for
a given channel realization. Moreover, we utilized the distribution in
(6.12) for the receiver distortion term to make the simplification

E{|vH
jkη

BS
j |2} = (1− κBS

r )
L∑

l=1

Kl∑

i=1
pliE{|vH

jk(h
j
li � η̄BS

jli )|2}

= (1− κBS
r )

L∑

l=1

Kl∑

i=1
pliE{‖vjk � hjli‖2}. (C.122)

The lower capacity bound in (6.34) now follows from (1.9) by inserting
the values of h and pυ provided above and then dividing all terms by
κUE
t κBS

r E{‖vjk‖2}. As a last step, we note that only the fraction τu/τc
of the samples are used for UL data transmission, which yields the lower
bound on the capacity that is stated in the theorem in bit/s/Hz.

C.5.3 Proof of Corollary 6.3

The expectations are computed by utilizing the statistics of the LMMSE
estimate in Theorem 6.2 on p. 420. Specifically, (6.35) is computed as

|E{vH
jkh

j
jk}|2

E{‖vjk‖2}
=
|E{(ĥjjk)Hhjjk}|2

E{(ĥjjk)Hĥjjk}
(a)= E{(ĥjjk)Hĥjjk}

(b)= tr(E{ĥjjk(ĥ
j
jk)

H})
(c)= pjkκ

UE
t κBS

r (βjjk)
2τpψjkMj (C.123)

where (a) follows from hjjk = ĥjjk + h̃jjk and the fact that the estimate
and the estimation error are uncorrelated (i.e., E{(ĥjjk)Hh̃jjk} = 0). Next,
(b) follows from the matrix identity (B.5) in Lemma B.5 on p. 560 and
(c) utilizes (6.27), which becomes pjkκUE

t κBS
r (βjjk)2τpψjkIMj for spatially

uncorrelated channels. Let Ajk =
√
pjkκ

UE
t κBS

r βjjkψjk and note that

E{‖vjk‖2} = pjkκ
UE
t κBS

r (βjjk)
2τpψjkMj =

A2
jkτpMj

ψjk
(C.124)



616 Collection of Proofs

with this notation. By utilizing the fact that ĥjjk = Ajkypjjk, the inter-
ference term in (6.36) can be expressed as

E{|vH
jkh

j
li|2}

E{‖vjk‖2}
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2
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(C.125)

where (a) follows from (6.22) by utilizing the fact that all cross-terms are
zero (a consequence of the circular symmetry of the Gaussian variables).
By computing the expectations with respect to the distortion terms and
noise, conditioned on the channel realizations, we further obtain (b).
It remains to compute the expectations with respect to the channels,
which are obtained as

E
{∣∣∣(hjl′i′)

Hhjli
∣∣∣
2
}

=





(M2
j +Mj)(βjli)2 (l′, i′) = (l, i)

Mjβ
j
l′i′β

j
li (l′, i′) 6= (l, i)

(C.126)

E{‖hjl′i′ � hjli‖2} =
Mj∑

m=1
E{|[hjl′i′ ]m|2|[h

j
li]m|2‖2}

=





2Mj(βjli)2 (l′, i′) = (l, i)
Mjβ

j
l′i′β

j
li (l′, i′) 6= (l, i)

(C.127)
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by utilizing Lemma B.14 on p. 564 to compute fourth-order moments
of the Gaussian random variables. Substituting (C.126) and (C.127)
into (C.125) yields the expression in (6.36) after some algebra (which
includes identifying that many of the terms within the parenthesis add
up to ψ−1

jk β
j
li). Note that the first term in (C.125) is different depending

on whether (l, i) ∈ Pjk or not (i.e., if the UEs are using the same pilot
sequence or not).

The derivation of (6.37) follows along similar lines:
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(C.128)

which becomes (6.37) by using (C.127) and some algebra (e.g., identify-
ing that many of the terms within the parenthesis add up to ψ−1

jk β
j
li).

The SE expression in (6.39) is finally obtained from (6.34) by insert-
ing the closed-form expressions for the expectations that were computed
above and then performing some algebra that involves identifying F jkli
and Gj in the expressions.
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C.5.4 Proof of Theorem 6.5

The received signal in (6.44) matches the discrete memoryless channel
in Corollary 1.3 on p. 171 with the deterministic channel response
h =

√
κBS
t κUE

r E{(hjjk)Hwjk}, the input x = ςjk, and the output y = yjk.
Using the notation from that corollary, the noise term is n = njk ∼
NC(0, σ2

DL) and the interference term is
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√
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Note that the interference term has zero mean and is uncorrelated with
the input since

E {x?υ} =
√
κBS
t κUE

r E{(hjjk)Hwjk − E{(hjjk)Hwjk}}︸ ︷︷ ︸
=0

E{|ςjk|2} = 0

(C.130)
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which are two of the conditions for applying Corollary 1.3. We further
note that

pυ = E
{
|υ|2

}

= κBS
t κUE

r
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by utilizing the fact that the zero-mean signals ςli and the channels
are mutually independent, while the transmitter and receiver distortion
terms are uncorrelated with all other terms, which is easily proved by
computing the conditional expectation for a given channel realization.
The second equality follows from applying the conditional correlation
matrix expressions from (6.16) and (6.18) for the distortion terms, while
the last equality follows from noting that the same terms appear several
times with different factors in front.

The SINR expression in (6.46) now follows from (1.9) by inserting
the values of h and pυ determined above, and then dividing all terms
by κBS

t κUE
r . As a last step, we note that only the fraction τd/τc of the

samples are used for DL data transmission, which yields the lower bound
on the capacity stated in the theorem in bit/s/Hz.
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C.5.5 Proof of Corollary 6.6

This corollary follows from computing the expectations in Theorem 6.5
for average-normalized MR precoding with wjk = ĥjjk/

√
E{‖ĥjjk‖2}.

These expectations are the same as those computed in (6.35)–(6.37),
except that the indices (l, i) and (k, j) are swapped in all the interference
terms. In particular, (6.36) becomes

E{|(ĥlli)Hhljk|2}
E{‖ĥlli‖2}

= βljk + pjk(βljk)2ψli
(
1− κBS

r + (1− κUE
t )κBS

r Ml

)

+




pjkκ

UE
t κBS

r (βljk)2τpψliMl (l, i) ∈ Pjk
0 (l, i) 6∈ Pjk

(C.132)

and (6.37) becomes

E{‖ĥlli � hljk‖2}
E{‖ĥlli‖2}

= βljk + pjk(βljk)2ψli
(
1− κUE

t κBS
r

)

+




pjkκ

UE
t κBS

r (βljk)2τpψli (l, i) ∈ Pjk
0 (l, i) 6∈ Pjk

(C.133)

where we have also utilized the facts that ψli = ψjk and Pli = Pjk
whenever (l, i) ∈ Pjk. Inserting (6.35), (C.132), and (C.133) into (6.46)
and simplifying the expressions, including identifying F lijk and Gl, yields
the final expression in (6.39).
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